Matching Items (121)
149458-Thumbnail Image.png
Description
With increasing interest in sustainability and green building, organizations are implementing programs such as Leadership in Energy and Environmental Design for Existing Buildings: Operations and Maintenance (LEED-EB) in order to focus corporate sustainability goals on the operations of a facility and the practices of the building occupants. Green building programs

With increasing interest in sustainability and green building, organizations are implementing programs such as Leadership in Energy and Environmental Design for Existing Buildings: Operations and Maintenance (LEED-EB) in order to focus corporate sustainability goals on the operations of a facility and the practices of the building occupants. Green building programs help reduce the impact of a facility and bring about several environmental benefits including but not limited to energy conservation, water conservation and material conservation. In addition to various environmental benefits, green building programs can help companies become more efficient. The problem is that organizations are not always successful in their pursuits to achieve sustainability goals. It frequently take years to implement a program, and in many cases the goals for sustainability never come to fruition, when in the mean time resources are wasted, money is spent needlessly and opportunities are lost forever. This thesis addresses how the Six Sigma methodologies used by so many to implement change in their organizations could be applied to the LEED-EB program to help companies achieve sustainability results. A qualitative analysis of the Six Sigma methodologies was performed to determine if and how a LEED-EB program might utilize such methods. The two programs were found to be compatible and several areas for improvements to implementing a LEED-EB program were identified.
ContributorsFurphy, Kimberly (Author) / Hild, Nicholas (Thesis advisor) / Olson, Larry (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2010
131639-Thumbnail Image.png
Description
Aluminum alloys are commonly used for engineering applications due to their high strength to weight ratio, low weight, and low cost. Pitting corrosion, accelerated by saltwater environments, leads to fatigue cracks and stress corrosion cracking during service. Two-dimensional (2D) characterization methods are typically used to identify and characterize corrosion; however,

Aluminum alloys are commonly used for engineering applications due to their high strength to weight ratio, low weight, and low cost. Pitting corrosion, accelerated by saltwater environments, leads to fatigue cracks and stress corrosion cracking during service. Two-dimensional (2D) characterization methods are typically used to identify and characterize corrosion; however, these methods are destructive and do not enable an efficient means of quantifying mechanisms of pit initiation and growth. In this study, lab-scale x-ray microtomography was used to non-destructively observe, quantify, and understand pit growth in three dimensions over a 20-day corrosion period in the AA7075-T651 alloy. The XRT process, capable of imaging sample volumes with a resolution near one micrometer, was found to be an ideal tool for large-volume pit examination. Pit depths were quantified over time using renderings of sample volumes, leading to an understanding of how inclusion particles, oxide breakdown, and corrosion mechanisms impact the growth and morphology of pits. This process, when carried out on samples produced with two different rolling directions and rolling extents, yielded novel insights into the long-term macroscopic corrosion behaviors impacted by alloy production and design. Key among these were the determinations that the alloy’s rolling direction produces a significant difference in the average growth rate of pits and that the corrosion product layer loses its passivating effect as a result of cyclic immersion. In addition, a new mechanism of pitting corrosion is proposed which is focused on the pseudo-random spatial distribution of iron-rich inclusion particles in the alloy matrix, which produces a random distribution of pit depths based on the occurrence of co-operative corrosion near inclusion clusters.
ContributorsSinclair, Daniel Ritchie (Author) / Chawla, Nikhilesh (Thesis director) / Jiao, Yang (Committee member) / Bale, Hrishikesh (Committee member) / School of International Letters and Cultures (Contributor) / Materials Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133865-Thumbnail Image.png
Description
As construction and building methods advance so should their focus on reconstruction post-natural disasters. For the past 50 years there has been an average of 6.2 hurricanes making landfall, and several recent unfortunate occurrences in the past year that have caused immeasurable damage and taken priceless lives (Chris Landsea 2017).

As construction and building methods advance so should their focus on reconstruction post-natural disasters. For the past 50 years there has been an average of 6.2 hurricanes making landfall, and several recent unfortunate occurrences in the past year that have caused immeasurable damage and taken priceless lives (Chris Landsea 2017). Damages could have been significantly reduced to residential homes and lives saved if proper, hurricane-resistant construction was used. It is important to continue advancement in efficient planning and reconstructive methods to restore individuals into their homes and ensure their safety in the future. Utilizing tested resilient building methods may increase construction costs but has a visible payoff through mitigation of economic losses in the future. This can also help develop response and mitigation plans based on the very specific conditions of each community or affected location. To do so, it is crucial to continue research and test various methods of construction and materials in residential homes. This study was a comparative analysis of the current roof systems implemented in residential homes, the role of hurricane testing facilities in maintaining building codes, and how damage incurred by hurricanes can be significantly reduced through a shift in the approach of homeowner insurance incentive. The purpose of this study was to provide a feasible and practicable solution for increasing implementation of hurricane resistant construction into homes. The results of this analysis concluded that there is a low percentage of homeowners investing in making their homes hurricane resilient. By re-inventing the incentive methods that insurance companies offer, this problem can step into the right direction in making more homes hurricane resilient consequently reducing damages, deaths, and economic loss.
ContributorsVarkalaite, Migle (Author) / Sullivan, Kenneth (Thesis director) / Ayer, Steven (Committee member) / School of International Letters and Cultures (Contributor) / Del E. Webb Construction (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133540-Thumbnail Image.png
Description
Services procured by government agencies are often ridden with delay and costly change orders. Government agencies may react to these failures by implementing restrictive terms and conditions intended to ensure that the service is delivered on time and within budget. While potentially helpful (and nearly always counterproductive), this approach often

Services procured by government agencies are often ridden with delay and costly change orders. Government agencies may react to these failures by implementing restrictive terms and conditions intended to ensure that the service is delivered on time and within budget. While potentially helpful (and nearly always counterproductive), this approach often fails to recognize the cause of the procurement failure \u2014 inadequate request for proposal (RFP) draftsmanship. The RFP must provide the vendor, or service provider, with a comprehensive understanding of the client's motivations for soliciting the bid, the environment in which the materials and services will be utilized, and accurate specifications for those materials and services. In summary, the RFP must be a clean and concise roadmap of client expectations. This thesis describes, for the novice RFP drafter, a value-based approach to preparing a request for proposal.
ContributorsWheeler, Brynn Marie (Author) / Sullivan, Kenneth (Thesis director) / Savicky, John (Committee member) / Hurtado, Kristen (Committee member) / Department of Supply Chain Management (Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134899-Thumbnail Image.png
Description
A public North American university needed a tool to automate their Vendor of Record rotation program. The goal was to give each vendor in the program fair opportunities and to be open and honest with how vendors were selected. This tool was created in Microsoft Excel with VBA to code

A public North American university needed a tool to automate their Vendor of Record rotation program. The goal was to give each vendor in the program fair opportunities and to be open and honest with how vendors were selected. This tool was created in Microsoft Excel with VBA to code macros. The three major Excel sheets are the Masters, the FM Interface, and the Executive Interface. The Masters act as a database and house data for each project. It is a plain Excel worksheet populated with tables. The FM Interface is a macro-enabled Excel workbook. It is distributed to every Facilities Manager in the program. The FM Interface communicates with the Masters in the background. The FMs use the various inputs and buttons to go through every step of procuring a project. They start by initializing a project, and are given a generated list of vendors who are qualified. This list is automatically rotated for every project. Then they fill in an RFQ and it is automatically emailed to the required vendors. When the Facilities Manager receives every quote, they input them into the program and they are saved to the database. When the project is complete, the manager must fill out a satisfaction survey to measure safety, cost, schedule, and quality of work. This is the main method of tracking vendor performance. The last sheet, the Executive Interface, is given only to the administrator of the program. It generates various reports, such as vendor performance, FM performance, and insurance status. It also has many administrative functions including insurance updating, vendor input, and delete project/vendor. The automated tool has been used without error on over 50 projects by 11 different Facilities Managers. The university's Facilities Management team is pleased with the automated process.
ContributorsSchneider, Steven Andrew (Author) / Sullivan, Kenneth (Thesis director) / Savicky, John (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
152178-Thumbnail Image.png
Description
The construction industry in India suffers from major time and cost overruns. Data from government and industry reports suggest that projects suffer from 20 to 25 percent time and cost overruns. Waste of resources has been identified as a major source of inefficiency. Despite a substantial increase in the past

The construction industry in India suffers from major time and cost overruns. Data from government and industry reports suggest that projects suffer from 20 to 25 percent time and cost overruns. Waste of resources has been identified as a major source of inefficiency. Despite a substantial increase in the past few years, demand for professionals and contractors still exceeds supply by a large margin. The traditional methods adopted in the Indian construction industry may not suffice the needs of this dynamic environment, as they have produced large inefficiencies. Innovative ways of procurement and project management can satisfy the needs aspired to as well as bring added value. The problems faced by the Indian construction industry are very similar to those faced by other developing countries. The objective of this paper is to discuss and analyze the economic concerns, inefficiencies and investigate a model that both explains the Indian construction industry structure and provides a framework to improve efficiencies. The Best Value (BV) model is examined as an approach to be adopted in lieu of the traditional approach. This could result in efficient construction projects by minimizing cost overruns and delays, which until now have been a rarity.
ContributorsNihas, Syed (Author) / Kashiwagi, Dean (Thesis advisor) / Sullivan, Kenneth (Committee member) / Kashiwagi, Jacob (Committee member) / Arizona State University (Publisher)
Created2013
171769-Thumbnail Image.png
Description
Electromigration, the net atomic diffusion associated with the momentum transfer from electrons moving through a material, is a major cause of device and component failure in microelectronics. The deleterious effects from electromigration rise with increased current density, a parameter that will only continue to increase as our electronic devices get

Electromigration, the net atomic diffusion associated with the momentum transfer from electrons moving through a material, is a major cause of device and component failure in microelectronics. The deleterious effects from electromigration rise with increased current density, a parameter that will only continue to increase as our electronic devices get smaller and more compact. Understanding the dynamic diffusional pathways and mechanisms of these electromigration-induced and propagated defects can further our attempts at mitigating these failure modes. This dissertation provides insight into the relationships between these defects and parameters of electric field strength, grain boundary misorientation, grain size, void size, eigenstrain, varied atomic mobilities, and microstructure.First, an existing phase-field model was modified to investigate the various defect modes associated with electromigration in an equiaxed non-columnar microstructure. Of specific interest was the effect of grain boundary misalignment with respect to current flow and the mechanisms responsible for the changes in defect kinetics. Grain size, magnitude of externally applied electric field, and the utilization of locally distinct atomic mobilities were other parameters investigated. Networks of randomly distributed grains, a common microstructure of interconnects, were simulated in both 2- and 3-dimensions displaying the effects of 3-D capillarity on diffusional dynamics. Also, a numerical model was developed to study the effect of electromigration on void migration and coalescence. Void migration rates were found to be slowed from compressive forces and the nature of the deformation concurrent with migration was examined through the lens of chemical potential. Void migration was also validated with previously reported theoretical explanations. Void coalescence and void budding were investigated and found to be dependent on the magnitude of interfacial energy and electric field strength. A grasp on the mechanistic pathways of electromigration-induced defect evolution is imperative to the development of reliable electronics, especially as electronic devices continue to miniaturize. This dissertation displays a working understanding of the mechanistic pathways interconnects can fail due to electromigration, as well as provide direction for future research and understanding.
ContributorsFarmer, William McHann (Author) / Ankit, Kumar (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Jiao, Yang (Committee member) / McCue, Ian (Committee member) / Arizona State University (Publisher)
Created2022
171531-Thumbnail Image.png
Description
The reality of smart cities is here and now. The issues of data privacy in tech applications are apparent in smart cities. Privacy as an issue raised by many and addressed by few remains critical for smart cities’ success. It is the common responsibility of smart cities, tech application makers,

The reality of smart cities is here and now. The issues of data privacy in tech applications are apparent in smart cities. Privacy as an issue raised by many and addressed by few remains critical for smart cities’ success. It is the common responsibility of smart cities, tech application makers, and users to embark on the journey to solutions. Privacy is an individual problem that smart cities need to provide a collective solution for. The research focuses on understanding users’ data privacy preferences, what information they consider private, and what they need to protect. The research identifies the data security loopholes, data privacy roadblocks, and common opportunities for change to implement a proactive privacy-driven tech solution necessary to address and resolve tech-induced data privacy concerns among citizens. This dissertation aims at addressing the issue of data privacy in tech applications based on known methodologies to address the concerns they allow. Through this research, a data privacy survey on tech applications was conducted, and the results reveal users’ desires to become a part of the solution by becoming aware and taking control of their data privacy while using tech applications. So, this dissertation gives an overview of the data privacy issues in tech, discusses available data privacy basis, elaborates on the different steps needed to create a robust remedy to data privacy concerns in enabling users’ awareness and control, and proposes two privacy applications one as a data privacy awareness solution and the other as a representation of the privacy control framework to address data privacy concerns in smart cities.
ContributorsMusafiri Mimo, Edgard (Author) / McDaniel, Troy (Thesis advisor) / Michael, Katina (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2022
171452-Thumbnail Image.png
Description
In a world where everything is drifting away from the intellectual into materialistic, and where everyone is rushing on the daily basis to provide their basic needs, everything is getting more expensive except the human life’s worth. Construction sites can be some of the clearer examples that show how the

In a world where everything is drifting away from the intellectual into materialistic, and where everyone is rushing on the daily basis to provide their basic needs, everything is getting more expensive except the human life’s worth. Construction sites can be some of the clearer examples that show how the technical work, the communication skills, team work and management relate to one another. However, lately, the safety of the labor is neither being prioritized nor considered an important aspect to even consider at sites. Lebanon is, unfortunately, one of the countries where most construction sites are aimed to increase production and decrease cost as much as possible, on behalf of labor safety measurements. The high occurrence of such cases are the result of the lack of government control and accountability, as well as other reasonings. Similar to the majority of countries, falls are the number one cause of fatalities and serious injuries on construction sites, especially building sites, where working on higher elevations is a must. This thesis focuses on the topic of “Techniques and technologies for reducing fall hazards in use on Lebanese building construction projects”. The main goal behind it is to shed light on whether there are any traditional, technical or modern mechanisms used for safety on the Lebanese construction sites, however statistically few they might be. On the other hand, Casting the deficiencies, weaknesses and flaws are also discussed by indicating some solutions and pointers on possible methods to improve. Hence, this thesis would demonstrate the high importance of this topic and consequently help construction managers and workers realize that safety should become a priority on all sites in the country. Researches done and interviews conducted show that fall hazards prevention/protection techniques are only implemented by large scale companies, and totally ignored by other companies which constitute the highest percentage of the active companies in the market now. Several causes are behind this and the result is one: More lives are put in danger due to lack of education, absence of audits and sanctions, and insufficient budgets
ContributorsMdawar, Hikmat (Author) / Gibson, George Edward (Thesis advisor) / El Asmar, Mounir (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2022
171473-Thumbnail Image.png
Description
Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many

Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many of which retain their as-built surface morphologies on account of their design complexity. However, there is limited understanding of how and why mechanical properties vary by wall thickness for specimens that are additively manufactured and maintain an as-printed surface finish. Critically, the contributions of microstructure and morphology to the mechanical behavior of thin wall laser powder bed fusion structures have yet to be systematically identified and decoupled. This work focuses on elucidating the room temperature quasi-static tensile and high cycle fatigue properties of as-printed, thin-wall Inconel 718 fabricated using laser powder bed fusion, with the aim of addressing this critical gap in the literature. Wall thicknesses studied range from 0.3 - 2.0 mm, and the effects of Hot Isostatic Pressing are also examined, with sheet metal specimens used as a baseline for comparison. Statistical analyses are conducted to identify the significance of the dependence of properties on wall thickness and Hot Isostatic Pressing, as well as to examine correlations of these properties to section area, porosity, and surface roughness. A thorough microstructural study is complemented with a first-of-its-kind study of surface morphology to decouple their contributions and identify underlying causes for observed changes in mechanical properties. This thesis finds that mechanical properties in the quasi-static and fatigue framework do not see appreciable declines until specimen thickness is under 0.75 mm in thickness. The added Hot Isostatic Pressing heat treatment effectively closed pores, recrystallized the grain structure, and provided a more homogenous microstructure that benefits the modulus, tensile strength, elongation, and fatigue performance at higher stresses. Stress heterogeneities, primarily caused by surface defects, negatively affected the thinner specimens disproportionately. Without the use of the Hot Isostatic Pressing, the grain structure remained much more refined and benefitted the yield strength and fatigue endurance limit.
ContributorsParadise, Paul David (Author) / Bhate, Dhruv (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Azeredo, Bruno (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2022