Matching Items (103)
152246-Thumbnail Image.png
Description
Smoke entering a flight deck cabin has been an issue for commercial aircraft for many years. The issue for a flight crew is how to mitigate the smoke so that they can safely fly the aircraft. For this thesis, the feasibility of having a Negative Pressure System that utilizes the

Smoke entering a flight deck cabin has been an issue for commercial aircraft for many years. The issue for a flight crew is how to mitigate the smoke so that they can safely fly the aircraft. For this thesis, the feasibility of having a Negative Pressure System that utilizes the cabin altitude pressure and outside altitude pressure to remove smoke from a flight deck was studied. Existing procedures for flight crews call for a descent down to a safe level for depressurizing the aircraft before taking further action. This process takes crucial time that is critical to the flight crew's ability to keep aware of the situation. This process involves a flight crews coordination and fast thinking to manually take control of the aircraft; which has become increasing more difficult due to the advancements in aircraft automation. Unfortunately this is the only accepted procedure that is used by a flight crew. Other products merely displace the smoke. This displacement is after the time it takes for the flight crew to set up the smoke displacement unit with no guarantee that a flight crew will be able to see or use all of the aircraft's controls. The Negative Pressure System will work automatically and not only use similar components already found on the aircraft, but work in conjunction with the smoke detection system and pressurization system so smoke removal can begin without having to descend down to a lower altitude. In order for this system to work correctly many factors must be taken into consideration. The size of a flight deck varies from aircraft to aircraft, therefore the ability for the system to efficiently remove smoke from an aircraft is taken into consideration. For the system to be feasible on an aircraft the cost and weight must be taken into consideration as the added fuel consumption due to weight of the system may be the limiting factor for installing such a system on commercial aircraft.
ContributorsDavies, Russell (Author) / Rogers, Bradley (Thesis advisor) / Palmgren, Dale (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2013
152163-Thumbnail Image.png
Description
This is a two-part thesis: Part 1 of this thesis tests and validates the methodology and mathematical models of the International Electrotechnical Commission (IEC) 61853-2 standard for the measurement of angle of incidence (AOI) effects on photovoltaic modules. Flat-plate photovoltaic modules in the field operate under a wide range of

This is a two-part thesis: Part 1 of this thesis tests and validates the methodology and mathematical models of the International Electrotechnical Commission (IEC) 61853-2 standard for the measurement of angle of incidence (AOI) effects on photovoltaic modules. Flat-plate photovoltaic modules in the field operate under a wide range of environmental conditions. The purpose of IEC 61853-2 is to characterize photovoltaic modules' performance under specific environmental conditions. Part 1 of this report focuses specifically on AOI. To accurately test and validate IEC 61853-2 standard for measuring AOI, meticulous experimental setup and test procedures were followed. Modules of five different photovoltaic technology types with glass superstrates were tested. Test results show practically identical relative light transmission plots for all five test modules. The experimental results were compared to theoretical and empirical models for relative light transmission of air-glass interface. IEC 61853-2 states "for the flat glass superstrate modules, the AOI test does not need to be performed; rather, the data of a flat glass air interface can be used." The results obtained in this thesis validate this statement. This work was performed in collaboration with another Master of Science student (Surynarayana Janakeeraman) and the test results are presented in two masters theses. Part 2 of this thesis is to develop non-intrusive techniques to accurately measure the quantum efficiency (QE) of a single-junction crystalline silicon cell within a commercial module. This thesis will describe in detail all the equipment and conditions necessary to measure QE and discuss the factors which may influence this measurement. The ability to utilize a non-intrusive test to measure quantum efficiency of a cell within a module is extremely beneficial for reliability testing of commercial modules. Detailed methodologies for this innovative test procedure are not widely available in industry because equipment and measurement techniques have not been explored extensively. This paper will provide a literature review describing relevant theories and measurement techniques related to measuring the QE of a cell within a module. The testing methodology and necessary equipment will be described in detail. Results and conclusions provide the overall accuracy of the measurements and discuss the parameters affecting these measurements.
ContributorsKnisely, Brett (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2013
151426-Thumbnail Image.png
Description
While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and

While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and feasibility of a piezoelectric tire was done. This includes the development of a circuit that incorporates piezoceramic elements, energy harvesting circuitry, and an energy storage device. A single phase circuit was designed using an ac-dc diode rectifier. An electrolytic capacitor was used as the energy storage device. A financial feasibility was also done to determine targets for manufacturing cost and sales price. These models take into account market trends for high performance tires, economies of scale, and the possibility of government subsidies. This research will help understand the potential for the marketability of a piezoelectric energy harvesting tire that can create electricity for remote use. This study found that there are many obstacles that must be addressed before a piezoelectric tire can be marketed to the general public. The power output of this device is miniscule compared to an alkaline battery. In order for this device to approach the power output of an alkaline battery the weight of the device would also become an issue. Additionally this device is very costly compared to the average bicycle tire. Lastly, this device is extreme fragile and easily broken. In order for this device to become marketable the issues of power output, cost, weight, and durability must all be successfully overcome.
ContributorsMalotte, Christopher (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
151340-Thumbnail Image.png
Description
Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell;

Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module's glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60 °C and 85 °C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity is disrupted at the inside boundary of the frame. The surface conductivity of the glass, due to water layer formation in a humid condition, close to the frame could be disrupted just by applying a water repelling (hydrophobic) but high transmittance surface coating (such as Teflon) or modifying the frame/glass edges with water repellent properties.
ContributorsTatapudi, Sai Ravi Vasista (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
151374-Thumbnail Image.png
Description
ABSTRACT As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year

ABSTRACT As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year old PV power plant in Phoenix, Arizona has been evaluated for performance, reliability, and durability. The PV power plant, called Solar One, is owned and operated by John F. Long's homeowners association. It is a 200 kWdc, standard test conditions (STC) rated power plant comprised of 4000 PV modules or frameless laminates, in 100 panel groups (rated at 175 kWac). The power plant is made of two center-tapped bipolar arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the south array and the other thesis presents the results obtained on the north array. Each of these two arrays is made of four sub arrays, the east sub arrays (positive and negative polarities) and the west sub arrays (positive and negative polarities), making up eight sub arrays. The evaluation and analyses of the power plant included in this thesis consists of: visual inspection, electrical performance measurements, and infrared thermography. A possible presence of potential induced degradation (PID) due to potential difference between ground and strings was also investigated. Some installation practices were also studied and found to contribute to the power loss observed in this investigation. The power output measured in 2011 for all eight sub arrays at STC is approximately 76 kWdc and represents a power loss of 62% (from 200 kW to 76 kW) over 26+ years. The 2011 measured power output for the four south sub arrays at STC is 39 kWdc and represents a power loss of 61% (from 100 kW to 39 kW) over 26+ years. Encapsulation browning and non-cell interconnect ribbon breakages were determined to be the primary causes for the power loss.
ContributorsOlakonu, Kolapo (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
152439-Thumbnail Image.png
Description
As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change

As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change (anisotropic for the initial lithiation of crystal silicon), plastic flow or softening of material dependent on composition, electrochemically driven phase transformation between solid states, anisotropic or isotropic migration of atomic sharp interface, and mass diffusion of lithium atoms. Motivated by the promising prospect of the application and underlying interesting physics, mechanics coupled with multi-physics of silicon electrodes in lithium ion batteries is studied in this dissertation. For silicon electrodes with large size, diffusion controlled kinetics is assumed, and the coupled large deformation and mass transportation is studied. For crystal silicon with small size, interface controlled kinetics is assumed, and anisotropic interface reaction is studied, with a geometry design principle proposed. As a preliminary experimental validation, enhanced lithiation and fracture behavior of silicon pillars via atomic layer coatings and geometry design is studied, with results supporting the geometry design principle we proposed based on our simulations. Through the work documented here, a consistent description and understanding of the behavior of silicon electrode is given at continuum level and some insights for the future development of the silicon electrode are provided.
ContributorsAn, Yonghao (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Phelan, Patrick (Committee member) / Wang, Yinming (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2014
150697-Thumbnail Image.png
Description
The mechanical behavior of Pb-free solder alloys is important, since they must maintain mechanical integrity under thermomechanical fatigue, creep, and mechanical shock conditions. Mechanical shock, in particular, has become an increasing concern in the electronics industry, since electronic packages can be subjected to mechanical shock by mishandling during manufacture or

The mechanical behavior of Pb-free solder alloys is important, since they must maintain mechanical integrity under thermomechanical fatigue, creep, and mechanical shock conditions. Mechanical shock, in particular, has become an increasing concern in the electronics industry, since electronic packages can be subjected to mechanical shock by mishandling during manufacture or by accidental dropping. In this study, the mechanical shock behavior of Sn and Sn-Ag-Cu alloys was systematically analyzed over the strain rate range 10-3 - 30 s-1 in bulk samples, and over 10-3 - 12 s-1 on the single solder joint level. More importantly, the influences of solder microstructure and intermetallic compounds (IMC) on mechanical shock resistance were quantified. A thorough microstructural characterization of Sn-rich alloys was conducted using synchrotron x-ray computed tomography. The three-dimensional morphology and distribution of contiguous phases and precipitates was analyzed. A multiscale approach was utilized to characterize Sn-rich phases on the microscale with x-ray tomography and focused ion beam tomography to characterize nanoscale precipitates. A high strain rate servohydraulic test system was developed in conjunction with a modified tensile specimen geometry and a high speed camera for quantifying deformation. The effect of microstructure and applied strain rate on the local strain and strain rate distributions were quantified using digital image correlation. Necking behavior was analyzed using a novel mirror fixture, and the triaxial stresses associated with necking were corrected using a self-consistent method to obtain the true stress-true strain constitutive behavior. Fracture mechanisms were quantified as a function of strain rate. Finally, the relationship between solder microstructure and intermetallic compound layer thickness with the mechanical shock resistance of Sn-3.8Ag-0.7Cu solder joints was characterized. It was found that at low strain rates the dynamic solder joint strength was controlled by the solder microstructure, while at high strain rates it was controlled by the IMC layer. The influences of solder microstructure and IMC layer thickness were then isolated using extended reflow or isothermal aging treatments. It was found that at large IMC layer thicknesses the trend described above does not hold true. The fracture mechanisms associated with the dynamic solder joint strength regimes were analyzed.
ContributorsYazzie, Kyle (Author) / Chawla, Nikhilesh (Thesis advisor) / Sane, Sandeep (Committee member) / Jiang, Hanqing (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
150928-Thumbnail Image.png
Description
Photovoltaic (PV) modules are typically rated at three test conditions: STC (standard test conditions), NOCT (nominal operating cell temperature) and Low E (low irradiance). The current thesis deals with the power rating of PV modules at twenty-three test conditions as per the recent International Electrotechnical Commission (IEC) standard of IEC

Photovoltaic (PV) modules are typically rated at three test conditions: STC (standard test conditions), NOCT (nominal operating cell temperature) and Low E (low irradiance). The current thesis deals with the power rating of PV modules at twenty-three test conditions as per the recent International Electrotechnical Commission (IEC) standard of IEC 61853 – 1. In the current research, an automation software tool developed by a previous researcher of ASU – PRL (ASU Photovoltaic Reliability Laboratory) is validated at various stages. Also in the current research, the power rating of PV modules for four different manufacturers is carried out according to IEC 61853 – 1 standard using a new outdoor test method. The new outdoor method described in this thesis is very different from the one reported by a previous researcher of ASU – PRL. The new method was designed to reduce the labor hours in collecting the current-voltage ( I – V) curves at various temperatures and irradiance levels. The power matrices for all the four manufacturers were generated using the I – V data generated at different temperatures and irradiance levels and the translation procedures described in IEC 60891 standard. All the measurements were carried out on both clear and cloudy days using an automated 2 – axis tracker located at ASU – PRL, Mesa, Arizona. The modules were left on the 2 – axis tracker for 12 continuous days and the data was continuously and automatically collected for every two minutes from 6 am to 6 pm. In order to obtain the I – V data at wide range of temperatures and irradiance levels, four identical (or nearly identical) modules were simultaneously installed on the 2 – axis tracker with and without thermal insulators on the back of the modules and with and without mesh screens on the front of the modules. Several issues related to the automation software were uncovered and the required improvement in the software has been suggested. The power matrices for four manufacturers have been successfully generated using the new outdoor test method developed in this work. The data generated in this work has been extensively analyzed for accuracy and for performance efficiency comparison at various temperatures and irradiance levels.
ContributorsVemula, Meena Gupta (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Macia, Narcio F. (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
150889-Thumbnail Image.png
Description
Pb-free solder joints are commonly used as interconnects in semiconductor packaging. One of the major defects affecting the mechanical performance of solder joints are reflow pores that form during processing. These pores exhibit significant variability in size and distribution, and understanding the effects of pore geometry on failure is an

Pb-free solder joints are commonly used as interconnects in semiconductor packaging. One of the major defects affecting the mechanical performance of solder joints are reflow pores that form during processing. These pores exhibit significant variability in size and distribution, and understanding the effects of pore geometry on failure is an important reliability concern. In this thesis, the pore microstructures of solder joint samples and the localized plastic deformation around individual pores was characterized in 3D using lab scale X-ray Microtomography. To observe the deformation of a solder joint in 3D, a solder joint was imaged with Microtomography after reflow and then deformed in shear in several loading steps with additional tomography data taken between each. The 3D tomography datasets were then segmented using the 3D Livewire technique into regions corresponding to solder and pores, and used to generate 3D models of the joint at each strain value using Mimics software. The extent of deformation of individual pores in the joint as a function of strain was quantified using sphericity measurements, and correlated with the observed cracking in the joint. In addition, the error inherent in the data acquisition and 3D modeling process was also quantified. The progression of damage observed with X-ray Microtomography was then used to validate the deformation and failure predicted by a Finite Element (FE) simulation. The FE model was based on the as-reflowed tomography data, and incorporated a ductile damage failure model to simulate fracture. Using the measured sphericity change and cracking information obtained from the tomography data, the FE model is shown to correctly capture the broad plastic deformation and strain localization seen in the actual joint, as well as the crack propagation. Lastly, Digital Image Correlation was investigated as a method of obtaining improved local strain measurements in 3D. This technique measures the displacement of the inherent microstructural features of the joint, and can give localized strain measurements that can be directly comparable to that predicted by modeling. The technique is demonstrated in 2D on Pb-Sn solder, and example 3D data is presented for future analysis.
ContributorsPadilla, Erick (Author) / Chawla, Nikhilesh (Thesis advisor) / Alford, Terry (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
150751-Thumbnail Image.png
Description
While the implementation of both mild hybrid and start-stop technology is widespread as a factory option in newer vehicles, the adaptation of hybrid technology to older or unequipped vehicles has not been fully realized. As such, a straight forward hybrid conversion system that is easily adapted to different vehicles regardless

While the implementation of both mild hybrid and start-stop technology is widespread as a factory option in newer vehicles, the adaptation of hybrid technology to older or unequipped vehicles has not been fully realized. As such, a straight forward hybrid conversion system that is easily adapted to different vehicles regardless of drivetrain configuration, has been developed and applied to a test vehicle for less than $2,000. System performance was recorded both before and after hybridization using real world drive cycle tracking charts. The vehicle established a fuel economy baseline of 22.93 mpg, and achieved 26.58 mpg after the conversion. This corresponds to a 15.92% increase in fuel economy. Accounting for initial system costs and annual fuel saving, this corresponds to a 6-year payback period. Based on these results, it can be concluded that an inexpensive aftermarket hybrid system is both feasible and effective at improving fuel economy.
ContributorsBeeney, Tyler (Author) / Rogers, Bradley (Thesis advisor) / Madakannan, Arunachalanadar (Committee member) / Henderson, Mark (Committee member) / Arizona State University (Publisher)
Created2012