Matching Items (759)
Filtering by

Clear all filters

150419-Thumbnail Image.png
Description
Pb-free solders are used as interconnects in various levels of micro-electronic packaging. Reliability of these interconnects is very critical for the performance of the package. One of the main factors affecting the reliability of solder joints is the presence of porosity which is introduced during processing of the joints. In

Pb-free solders are used as interconnects in various levels of micro-electronic packaging. Reliability of these interconnects is very critical for the performance of the package. One of the main factors affecting the reliability of solder joints is the presence of porosity which is introduced during processing of the joints. In this thesis, the effect of such porosity on the deformation behavior and eventual failure of the joints is studied using Finite Element (FE) modeling technique. A 3D model obtained by reconstruction of x-ray tomographic image data is used as input for FE analysis to simulate shear deformation and eventual failure of the joint using ductile damage model. The modeling was done in ABAQUS (v 6.10). The FE model predictions are validated with experimental results by comparing the deformation of the pores and the crack path as predicted by the model with the experimentally observed deformation and failure pattern. To understand the influence of size, shape, and distribution of pores on the mechanical behavior of the joint four different solder joints with varying degrees of porosity are modeled using the validated FE model. The validation technique mentioned above enables comparison of the simulated and actual deformation only. A more robust way of validating the FE model would be to compare the strain distribution in the joint as predicted by the model and as observed experimentally. In this study, to enable visualization of the experimental strain for the 3D microstructure obtained from tomography, a three dimensional digital image correlation (3D DIC) code has been implemented in MATLAB (MathWorks Inc). This developed 3D DIC code can be used as another tool to verify the numerical model predictions. The capability of the developed code in measuring local displacement and strain is demonstrated by considering a test case.
ContributorsJakkali, Vaidehi (Author) / Chawla, Nikhilesh K (Thesis advisor) / Jiang, Hanqing (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2011
148107-Thumbnail Image.png
Description

Partisan politics has created an increasingly polarized political climate in the United States. Despite the divisive political climate, women’s representation in politics has also increased drastically over the years. I began this project to see if there is a partisan rivalry between women in politics or a sense of shared

Partisan politics has created an increasingly polarized political climate in the United States. Despite the divisive political climate, women’s representation in politics has also increased drastically over the years. I began this project to see if there is a partisan rivalry between women in politics or a sense of shared “womanhood.” This thesis explores the role political parties play for women in office by examining how they vote on bills, what type of bills they propose, and whether or not they work collaboratively with their female counterparts at the Arizona State Legislature. My main goals for this project are to see how strong or weak political parties are in shaping political behavior at the Arizona State Legislature and to determine if there is a sense of “womanhood” despite different political affiliations. I also explore the role party affiliation plays within women legislators at the Arizona State Legislature.

ContributorsSanson, Claudia Maria (Author) / Lennon, Tara (Thesis director) / Woodall, Gina (Committee member) / School of Public Affairs (Contributor) / Department of English (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148132-Thumbnail Image.png
Description

Laminated composites are increasingly being used in various industries including <br/>automotive and aerospace. Under a variety of extreme loading conditions such as low and <br/>high-velocity impacts and crash, laminated composites delaminate. To understand how and<br/>when delamination occurs, two types of laboratory tests are conducted - End-notched <br/>Flexure (ENF) test and

Laminated composites are increasingly being used in various industries including <br/>automotive and aerospace. Under a variety of extreme loading conditions such as low and <br/>high-velocity impacts and crash, laminated composites delaminate. To understand how and<br/>when delamination occurs, two types of laboratory tests are conducted - End-notched <br/>Flexure (ENF) test and Double Cantilever Beam (DCB) test. The ENF test is designed to <br/>find the mode II interlaminar fracture toughness, and the DCB test, the mode I interlaminar <br/>fracture toughness. In this thesis, thermopressed Honeywell Spectra Shield® 5231 <br/>composite specimens made of ultra-high molecular weight polyethylene (UHMWPE), <br/>manufactured under two different pressures (3000 psi and 6000 psi), are tested in the <br/>laboratory to find its delamination properties. The test specimen preparation, experimental <br/>procedures, and data reduction to determine the mode I and mode II interlaminar fracture <br/>properties are discussed. The ENF test results show a 15.8% increase in strain energy <br/>release rate for the 6000 psi specimens when compared to the 3000 psi specimens. <br/>Conducting the DCB tests proved to be challenging due to the low compressive strength <br/>of the material and hence required modifications to the test specimens. An estimate of the <br/>mode I interlaminar fracture toughness was found for only two of the 6000 psi specimens.

ContributorsRyder, Chandler (Author) / Rajan, Subramaniam (Thesis director) / Khaled, Bilal (Committee member) / Neithalath, Narayanan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147858-Thumbnail Image.png
Description

In recent years, immigration, especially concerning those individuals immigrating from Central America and Mexico, has become increasingly controversial. Within the last five presidents, policies concerning immigration have shifted. Under President Bill Clinton in 1997, the Flores Settlement, an agreement between immigration activist organizations and the government that created standards for

In recent years, immigration, especially concerning those individuals immigrating from Central America and Mexico, has become increasingly controversial. Within the last five presidents, policies concerning immigration have shifted. Under President Bill Clinton in 1997, the Flores Settlement, an agreement between immigration activist organizations and the government that created standards for detaining accompanied and unaccompanied minors was made. Following 9/11, in 2005, President George W. Bush increased the amount of money spent on immigration enforcement in an effort to deport more immigrants. President Barack Obama increased the number of deportations from President Bush during his first term. However, in 2014, an already imperfect immigration system was disrupted by an influx of child immigrants. As a result, detention centers were at capacity and unable to accommodate the increasing numbers of immigrants. Child migrants were placed in caged-areas, immigration lawyers and courts quickly became overwhelmed with cases, and children were alone and could barely communicate. This thesis explores the various relationships between accompanied and unaccompanied minors from Central America, the American legal system, and the media and broadcast news outlets’ rhetoric concerning child migrants. Focusing on the ways in which immigrant minors are objectified by the legal system and the framing of immigrants in the media, it is evident that their complex interaction allows for the oppression of the child migrants. Since the American legal system and the media influence and respond to each other, the responsibility of the child migrants’ dehumanization is on both the legal system and the rhetoric of the media and broadcast news outlets.

ContributorsValli-Doherty, Francesca (Author) / Soares, Rebecca (Thesis director) / Agruss, David (Committee member) / School of Public Affairs (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147868-Thumbnail Image.png
Description

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.

ContributorsRanganathan, Anirudh (Co-author) / Karthikeyan, Sayish (Co-author) / Takahashi, Timothy (Thesis director) / Niemczyk, Mary (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148155-Thumbnail Image.png
Description

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of the hybrid system increases initially then decreases because the decreasing flow rate of air begins to outweigh the increasing hydrogen concentration. This occurs at an equivalence ratio of 2 for CH4. The thermodynamic cycle is analyzed using a temperature entropy diagram and a pressure volume diagram. These thermodynamic diagrams show as equivalence ratio increases, the power generated by the turbine in the hybrid setup decreases. Thermodynamic analysis was performed to verify that energy is conserved and the total chemical energy going into the system was equal to the heat rejected by the system plus the power generated by the system. Of the six fuels, the hybrid system performs best with H2 as the fuel. The electrical efficiency with H2 is predicted to be 27%, CH4 is 24%, C3H8 is 22%, JP-4 is 21%, JP-5 is 20%, and JP-10(L) is 20%. When H2 fuel is used, the overall integrated system is predicted to be 24.5% more efficient than the standard gas turbine system. The integrated system is predicted to be 23.0% more efficient with CH4, 21.9% more efficient with C3H8, 22.7% more efficient with JP-4, 21.3% more efficient with JP-5, and 20.8% more efficient with JP-10(L). The sensitivity of the model is investigated using various fuel utilizations. When CH4 fuel is used, the integrated system is predicted to be 22.7% more efficient with a fuel utilization efficiency of 90% compared to that of 30%.

ContributorsRupiper, Lauren Nicole (Author) / Milcarek, Ryan (Thesis director) / Wang, Liping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148158-Thumbnail Image.png
Description

This project is a critical analysis of the works of 6 American war veterans and how they demonstrate trauma in their narratives. The texts covered here are Philip Red Eagle’s Red Earth (2007), John A. Williams’ Captain Blackman (1972), Roy Scranton’s War Porn (2016), Tim O’Brien’s The Things They

This project is a critical analysis of the works of 6 American war veterans and how they demonstrate trauma in their narratives. The texts covered here are Philip Red Eagle’s Red Earth (2007), John A. Williams’ Captain Blackman (1972), Roy Scranton’s War Porn (2016), Tim O’Brien’s The Things They Carried (1990), Kurt Vonnegut’s Slaughterhouse-Five (1969), and Joseph Heller’s Catch-22 (1961).

ContributorsNovinger, Joshua (Author) / Ellis, Lawrence (Thesis director) / Goodman, Brian (Committee member) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148167-Thumbnail Image.png
Description

While many 3D printed structures are rigid and stationary, the potential for complex geometries offers a chance for creative and useful motion. Printing structures larger than the print bed, reducing the need for support materials, maintaining multiple states without actuation, and mimicking origami folding are some of the opportunities offered

While many 3D printed structures are rigid and stationary, the potential for complex geometries offers a chance for creative and useful motion. Printing structures larger than the print bed, reducing the need for support materials, maintaining multiple states without actuation, and mimicking origami folding are some of the opportunities offered by 3D printed hinges. Current efforts frequently employ advanced materials and equipment that are not available to all users. The purpose of this project was to develop a parametric, print-in-place, self-locking hinge that could be printed using very basic materials and equipment. Six main designs were developed, printed, and tested for their strength in maintaining a locked position. Two general design types were used: 1) sliding hinges and 2) removable pin hinges. The test results were analyzed to identify and explain the causes of observed trends. The amount of interference between the pin vertex and knuckle hole edge was identified as the main factor in hinge strength. After initial testing, the designs were modified and applied to several structures, with successful results for a collapsible hexagon and a folding table. While the initial goal was to have one CAD model as a final product, the need to evaluate tradeoffs depending on the exact application made this impossible. Instead, a set of design guidelines was created to help users make strategic decisions and create their own design. Future work could explore additional scaling effects, printing factors, or other design types.

ContributorsAndreotti, Jaimee Jeannette (Author) / Bhate, Dhruv (Thesis director) / Aukes, Daniel (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148172-Thumbnail Image.png
Description

Increasing reliable produce farming and clean energy generation in the southwestern United States will be important for increasing the food supply for a growing population and reducing reliance on fossil fuels to generate energy. Combining greenhouses with photovoltaic (PV) films can allow both food and electric power to be produced

Increasing reliable produce farming and clean energy generation in the southwestern United States will be important for increasing the food supply for a growing population and reducing reliance on fossil fuels to generate energy. Combining greenhouses with photovoltaic (PV) films can allow both food and electric power to be produced simultaneously. This study tests if the combination of semi-transparent PV films and a transmission control layer can generate energy and spectrally control the transmission of light into a greenhouse. Testing the layer combinations in a variety of real-world conditions, it was shown that light can be spectrally controlled in a greenhouse. The transmission was overall able to be controlled by an average of 11.8% across the spectrum of sunlight, with each semi-transparent PV film able to spectrally select transmission of light in both the visible and near-infrared light wavelength. The combination of layers was also able to generate energy at an average efficiency of 8.71% across all panels and testing conditions. The most efficient PV film was the blue dyed, at 9.12%. This study also suggests additional improvements for this project, including the removal of the red PV film due to inefficiencies in spectral selection and additional tests with new materials to optimize plant growth and energy generation in a variety of light conditions.

ContributorsGunderson, Evan (Author) / Phelan, Patrick (Thesis director) / Villalobos, Rene (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148029-Thumbnail Image.png
Description

Claiming Impossible Bodies is a collection of poetry and collage exploring gender and sexuality through the lens of the vampire. For this project, I researched various representations of the vampires through folklore, classical and modern literature, film, and pop culture. The liminality of the vampire allows such figures to take

Claiming Impossible Bodies is a collection of poetry and collage exploring gender and sexuality through the lens of the vampire. For this project, I researched various representations of the vampires through folklore, classical and modern literature, film, and pop culture. The liminality of the vampire allows such figures to take different forms and identities, ranging from dark and grotesque creatures, such as the succubus or incubus from mythology, to modern sex-icons, like Edward Cullen from the Twilight Saga. Considering this wide range of performances by vampiric figures throughout history, the poems in this manuscript seek to deconstruct the binaries that vampires live between and expose the liminality in social norms that attempt to define our identities and shape our performances.

ContributorsWitter, Genevieve Michelle (Author) / Ball, Sally (Thesis director) / Meinen, Avery (Committee member) / Department of English (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05