Matching Items (185)
152277-Thumbnail Image.png
Description
Silicon solar cells with heterojunction carrier collectors based on a-Si/c-Si heterojunction (SHJ) have a potential to overcome the limitations of the conventional diffused junction solar cells and become the next industry standard manufacturing technology of solar cells. A brand feature of SHJ technology is ultrapassivated surfaces with already demonstrated 750

Silicon solar cells with heterojunction carrier collectors based on a-Si/c-Si heterojunction (SHJ) have a potential to overcome the limitations of the conventional diffused junction solar cells and become the next industry standard manufacturing technology of solar cells. A brand feature of SHJ technology is ultrapassivated surfaces with already demonstrated 750 mV open circuit voltages (Voc) and 24.7% efficiency on large area solar cell. Despite very good results achieved in research and development, large volume manufacturing of high efficiency SHJ cells remains a fundamental challenge. The main objectives of this work were to develop a SHJ solar cell fabrication flow using industry compatible tools and processes in a pilot production environment, study the interactions between the used fabrication steps, identify the minimum set of optimization parameters and characterization techniques needed to achieve 20% baseline efficiency, and analyze the losses of power in fabricated SHJ cells by numerical and analytical modeling. This manuscript presents a detailed description of a SHJ solar cell fabrication flow developed at ASU Solar Power Laboratory (SPL) which allows large area solar cells with >750 mV Voc. SHJ cells on 135 um thick 153 cm2 area wafers with 19.5% efficiency were fabricated. Passivation quality of (i)a-Si:H film, bulk conductivity of doped a-Si films, bulk conductivity of ITO, transmission of ITO and the thickness of all films were identified as the minimum set of optimization parameters necessary to set up a baseline high efficiency SHJ fabrication flow. The preparation of randomly textured wafers to minimize the concentration of surface impurities and to avoid epitaxial growth of a-Si films was found to be a key challenge in achieving a repeatable and uniform passivation. This work resolved this issue by using a multi-step cleaning process based on sequential oxidation in nitric/acetic acids, Piranha and RCA-b solutions. The developed process allowed state of the art surface passivation with perfect repeatability and negligible reflectance losses. Two additional studies demonstrated 750 mV local Voc on 50 micron thick SHJ solar cell and < 1 cm/s effective surface recombination velocity on n-type wafers passivated by a-Si/SiO2/SiNx stack.
ContributorsHerasimenka, Stanislau Yur'yevich (Author) / Honsberg, C. (Christiana B.) (Thesis advisor) / Bowden, Stuart G (Thesis advisor) / Tracy, Clarence (Committee member) / Vasileska, Dragica (Committee member) / Holman, Zachary (Committee member) / Sinton, Ron (Committee member) / Arizona State University (Publisher)
Created2013
152285-Thumbnail Image.png
Description
Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient

Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient and low cost technique for large area and uniform deposition of semiconductor thin films. In particular, it provides an easier way to dope the film by simply adding the dopant precursor into the starting solution. In order to reduce the resistivity of undoped ZnO, many works have been done by doping in the ZnO with either group IIIA elements or VIIA elements using spray pyrolysis. However, the resistivity is still too high to meet TCO's resistivity requirement. In the present work, a novel co-spray deposition technique is developed to bypass a fundamental limitation in the conventional spray deposition technique, i.e. the deposition of metal oxides from incompatible precursors in the starting solution. With this technique, ZnO films codoped with one cationic dopant, Al, Cr, or Fe, and an anionic dopant, F, have been successfully synthesized, in which F is incompatible with all these three cationic dopants. Two starting solutions were prepared and co-sprayed through two separate spray heads. One solution contained only the F precursor, NH 4F. The second solution contained the Zn and one cationic dopant precursors, Zn(O 2CCH 3) 2 and AlCl 3, CrCl 3, or FeCl 3. The deposition was carried out at 500 &degC; on soda-lime glass in air. Compared to singly-doped ZnO thin films, codoped ZnO samples showed better electrical properties. Besides, a minimum sheet resistance, 55.4 Ω/sq, was obtained for Al and F codoped ZnO films after vacuum annealing at 400 &degC;, which was lower than singly-doped ZnO with either Al or F. The transmittance for the Al and F codoped ZnO samples was above 90% in the visible range. This co-spray deposition technique provides a simple and cost-effective way to synthesize metal oxides from incompatible precursors with improved properties.
ContributorsZhou, Bin (Author) / Tao, Meng (Thesis advisor) / Goryll, Michael (Committee member) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2013
151557-Thumbnail Image.png
Description
This work is focused on modeling the reliability concerns in GaN HEMT technology. The two main reliability concerns in GaN HEMTs are electromechanical coupling and current collapse. A theoretical model was developed to model the piezoelectric polarization charge dependence on the applied gate voltage. As the sheet electron density in

This work is focused on modeling the reliability concerns in GaN HEMT technology. The two main reliability concerns in GaN HEMTs are electromechanical coupling and current collapse. A theoretical model was developed to model the piezoelectric polarization charge dependence on the applied gate voltage. As the sheet electron density in the channel increases, the influence of electromechanical coupling reduces as the electric field in the comprising layers reduces. A Monte Carlo device simulator that implements the theoretical model was developed to model the transport in GaN HEMTs. It is observed that with the coupled formulation, the drain current degradation in the device varies from 2%-18% depending on the gate voltage. Degradation reduces with the increase in the gate voltage due to the increase in the electron gas density in the channel. The output and transfer characteristics match very well with the experimental data. An electro-thermal device simulator was developed coupling the Monte Caro-Poisson solver with the energy balance solver for acoustic and optical phonons. An output current degradation of around 2-3 % at a drain voltage of 5V due to self-heating was observed. It was also observed that the electrostatics near the gate to drain region of the device changes due to the hot spot created in the device from self heating. This produces an electric field in the direction of accelerating the electrons from the channel to surface states. This will aid to the current collapse phenomenon in the device. Thus, the electric field in the gate to drain region is very critical for reliable performance of the device. Simulations emulating the charging of the surface states were also performed and matched well with experimental data. Methods to improve the reliability performance of the device were also investigated in this work. A shield electrode biased at source potential was used to reduce the electric field in the gate to drain extension region. The hot spot position was moved away from the critical gate to drain region towards the drain as the shield electrode length and dielectric thickness were being altered.
ContributorsPadmanabhan, Balaji (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen M (Committee member) / Alford, Terry L. (Committee member) / Venkatraman, Prasad (Committee member) / Arizona State University (Publisher)
Created2013
151704-Thumbnail Image.png
Description
Research has shown that a developmental process of maturing out of alcohol involvement occurs during young adulthood, and that this process is related to both young adult role transitions (e.g., marriage) and personality developmental (e.g., decreased disinhibition and neuroticism). The current study extended past research by testing whether protective marriage

Research has shown that a developmental process of maturing out of alcohol involvement occurs during young adulthood, and that this process is related to both young adult role transitions (e.g., marriage) and personality developmental (e.g., decreased disinhibition and neuroticism). The current study extended past research by testing whether protective marriage and personality effects on maturing out were stronger among more severe late adolescent drinkers, and whether protective marriage effects were stronger among those who experienced more personality development. Parental alcoholism and gender were tested as moderators of marriage, personality, and late adolescent drinking effects on maturing out; and as distal predictors mediated by these effects. Participants were a subsample (N = 844; 51% children of alcoholics; 53% male, 71% non-Hispanic Caucasian, 27% Hispanic; Chassin, Barrera, Bech, & Kossak-Fuller, 1992) from a larger longitudinal study of familial alcoholism. Hypotheses were tested with latent growth models characterizing alcohol consumption and drinking consequence trajectories from late adolescence to adulthood (age 17-40). Past findings were replicated by showing protective effects of becoming married, sensation-seeking reductions, and neuroticism reductions on the drinking trajectories. Moderation tests showed that protective marriage effects on the drinking trajectories were stronger among those with higher pre-marriage drinking in late adolescence (i.e., higher growth intercepts). This might reflect role socialization mechanisms such that more severe drinking produces more conflict with the demands of new roles (i.e., role incompatibility), thus requiring greater drinking reductions to resolve this conflict. In contrast, little evidence was found for moderation of personality effects by late adolescent drinking or for moderation of marriage effects by personality. Parental alcoholism findings suggested complex moderated mediation pathways. Parental alcoholism predicted less drinking reduction through decreasing the likelihood of marriage (mediation) and muting marriage's effect on the drinking trajectories (moderation), but parental alcoholism also predicted more drinking reduction through increasing initial drinking in late adolescence (mediation). The current study provides new insights into naturally occurring processes of recovery during young adulthood and suggests that developmentally-tailored interventions for young adults could harness these natural recovery processes (e.g., by integrating role incompatibility themes and addressing factors that block role effects among those with familial alcoholism).
ContributorsLee, Matthew R. (Author) / Chassin, Laurie (Thesis advisor) / Corbin, William R. (Committee member) / Mackinnon, David P (Committee member) / Presson, Clark C. (Committee member) / Arizona State University (Publisher)
Created2013
151706-Thumbnail Image.png
Description
Past literature has indicated that the majority of people with alcohol problems never seek treatment and that this is especially true of women. Relatively few studies have investigated how different types of alcohol-related consequences longitudinally predict men and women's perceived need for treatment and their utilization of treatment services. The

Past literature has indicated that the majority of people with alcohol problems never seek treatment and that this is especially true of women. Relatively few studies have investigated how different types of alcohol-related consequences longitudinally predict men and women's perceived need for treatment and their utilization of treatment services. The current study sought to expand the literature by examining whether gender moderates the links between four frequently endorsed types of consequences and perceived need for or actual utilization of treatment. Two-hundred thirty-seven adults ages 21-36 completed a battery of questionnaires at two time points five years apart. Results indicated that there were four broad types of consequences endorsed by both men and women. Multiple-group models and Wald chi square tests indicated that there were no significant relationships between consequences and treatment outcomes. No gender moderation was found but post-hoc power analyses indicated that the study was underpowered to detect moderation. Researchers need to continue to study factors that predict utilization of alcohol treatment services and the process of recovery so that treatment providers can better address the needs of people with alcohol-related consequences in the areas of referral procedures, clinical assessment, and treatment service provision and planning.
ContributorsBeltran Gonzalez, Iris (Author) / Chassin, Laurie (Thesis advisor) / Tein, Jenn-Yun (Committee member) / Corbin, William (Committee member) / Barrera, Jr., Manuel (Committee member) / Arizona State University (Publisher)
Created2013
151648-Thumbnail Image.png
Description
Since its inception about three decades ago, silicon on insulator (SOI) technology has come a long way to be included in the microelectronics roadmap. Earlier, scientists and engineers focused on ways to increase the microprocessor clock frequency and speed. Today, with smart phones and tablets gaining popularity, power consumption has

Since its inception about three decades ago, silicon on insulator (SOI) technology has come a long way to be included in the microelectronics roadmap. Earlier, scientists and engineers focused on ways to increase the microprocessor clock frequency and speed. Today, with smart phones and tablets gaining popularity, power consumption has become a major factor. In this thesis, self-heating effects in a 25nm fully depleted (FD) SOI device are studied by implementing a 2-D particle based device simulator coupled self-consistently with the energy balance equations for both acoustic and optical phonons. Semi-analytical expressions for acoustic and optical phonon scattering rates (all modes) are derived and evaluated using quadratic dispersion relationships. Moreover, probability distribution functions for the final polar angle after scattering is also computed and the rejection technique is implemented for its selection. Since the temperature profile varies throughout the device, temperature dependent scattering tables are used for the electron transport kernel. The phonon energy balance equations are also modified to account for inelasticity in acoustic phonon scattering for all branches. Results obtained from this simulation help in understanding self-heating and the effects it has on the device characteristics. The temperature profiles in the device show a decreasing trend which can be attributed to the inelastic interaction between the electrons and the acoustic phonons. This is further proven by comparing the temperature plots with the simulation results that assume the elastic and equipartition approximation for acoustic and the Einstein model for optical phonons. Thus, acoustic phonon inelasticity and the quadratic phonon dispersion relationships play a crucial role in studying self-heating effects.
ContributorsGada, Manan Laxmichand (Author) / Vasileska, Dragica (Thesis advisor) / Ferry, David K. (Committee member) / Goodnick, Stephen M (Committee member) / Arizona State University (Publisher)
Created2013
151720-Thumbnail Image.png
Description
Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary energy sources replacing fossil fuels. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides

Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary energy sources replacing fossil fuels. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides a deeper understanding of device operation and ways to improve their efficiency. Over the last two decades, polycrystalline thin-film Cadmium-Sulfide and Cadmium-Telluride (CdS/CdTe) solar cells fabricated on glass substrates have been considered as one of the most promising candidate in the photovoltaic technologies, for their similar efficiency and low costs when compared to traditional silicon-based solar cells. In this work a fast one dimensional time-dependent/steady-state drift-diffusion simulator, accelerated by adaptive non-uniform mesh and automatic time-step control, for modeling solar cells has been developed and has been used to simulate a CdS/CdTe solar cell. These models are used to reproduce transients of carrier transport in response to step-function signals of different bias and varied light intensity. The time-step control models are also used to help convergence in steady-state simulations where constrained material constants, such as carrier lifetimes in the order of nanosecond and carrier mobility in the order of 100 cm2/Vs, must be applied.
ContributorsGuo, Da (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen M (Committee member) / Sankin, Igor (Committee member) / Arizona State University (Publisher)
Created2013
152230-Thumbnail Image.png
Description
Juvenile offenders suffer from substance use disorders at higher rates than adolescents in the general public. Substance use disorders also predict an increased risk for re-offending. Therefore, it is important that these juveniles, in particular, receive the appropriate substance use disorder treatment. The present study used logistic regression to test

Juvenile offenders suffer from substance use disorders at higher rates than adolescents in the general public. Substance use disorders also predict an increased risk for re-offending. Therefore, it is important that these juveniles, in particular, receive the appropriate substance use disorder treatment. The present study used logistic regression to test whether race/ethnicity would moderate the match between substance use disorder diagnosis and the receipt of a substance use disorder related service in a sample of male, serious juvenile offenders. Results showed that among those with a substance use disorder diagnosis, there were no race/ethnicity differences in the receipt of the appropriate service. However, among those without a substance use disorder diagnosis, non-Hispanic Caucasians were more likely to receive substance use service than were Hispanics or African-Americans. Post-hoc analyses revealed that when using a broader definition of substance use problems, significant differences by race/ethnicity in the prediction of service receipt were only observed at low levels of substance use problems. These findings shed light on how race/ethnicity may play a role in the recommendation of substance use disorder services in the juvenile justice system.
ContributorsMansion, Andre (Author) / Chassin, Laurie (Thesis advisor) / Dishion, Thomas (Committee member) / Knight, George (Committee member) / Arizona State University (Publisher)
Created2013
151414-Thumbnail Image.png
Description
The hypothalamus pituitary adrenal (HPA) axis and the human genome are important components of the biological etiology of externalizing disorders. By studying the associations between specific genetic variants, diurnal cortisol, and externalizing symptoms we can begin to unpack this complex etiology. It was hypothesized that genetic variants from the corticotropine

The hypothalamus pituitary adrenal (HPA) axis and the human genome are important components of the biological etiology of externalizing disorders. By studying the associations between specific genetic variants, diurnal cortisol, and externalizing symptoms we can begin to unpack this complex etiology. It was hypothesized that genetic variants from the corticotropine releasing hormone receptor 1 (CRHR1), FK506 binding protein 51 (FKBP5), catechol-O-methyl transferase (COMT), and dopamine transporter (DAT1) genes and diurnal cortisol intercepts and slopes would separately predict externalizing symptoms. It was also hypothesized that genetic variants would moderate the association between cortisol and externalizing. Participants were 800 twins (51% boys), 88.5% Caucasian, M=7.93 years (SD=0.87) participating in the Wisconsin Twin Project. Hierarchical Linear Modeling (HLM) was used to separate the variance associated with state and trait cortisol measured across three consecutive days and trait cortisol measures were used. There were no main effects of genes on externalizing symptoms. The evening cortisol intercept, the morning cortisol slope and the evening cortisol slope predicted externalizing, but only in boys, such that boys with higher cortisol and flatter slopes across the day also had more externalizing symptoms. The morning cortisol intercept and CRHR1 rs242924 interacted to predict externalizing in both boys and girls, with GG carriers significantly higher compared to TT carriers at one standard deviation below the mean of morning cortisol. For boys only there was a significant interaction between the DAT1 variable number tandem repeat (VNTR) and the afternoon slope and a significant slope for 9/9 carriers and 9/10 carriers such that when the slope was more steep, boys carrying a nine had fewer externalizing symptoms but when the slope was less steep, they had more. Results confirm a link between diurnal trait cortisol and externalizing in boys, as well as moderation of that association by genetic polymorphisms. This is the first study to empirically examine this association and should encourage further research on the biological etiology of externalizing disorder symptoms.
ContributorsSwann, Gregory (Author) / Lemery-Chalfant, Kathryn (Thesis advisor) / Chassin, Laurie (Committee member) / Doane-Sampey, Leah (Committee member) / Arizona State University (Publisher)
Created2012
151418-Thumbnail Image.png
Description
ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of

ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10 - 100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.
ContributorsDaugherty, Robin (Author) / Allee, David R. (Thesis advisor) / Chae, Junseok (Thesis advisor) / Aberle, James T (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012