Matching Items (16)
Filtering by

Clear all filters

154704-Thumbnail Image.png
Description
E-Mail header injection vulnerability is a class of vulnerability that can occur in web applications that use user input to construct e-mail messages. E-Mail injection is possible when the mailing script fails to check for the presence of e-mail headers in user input (either form fields or URL parameters). The

E-Mail header injection vulnerability is a class of vulnerability that can occur in web applications that use user input to construct e-mail messages. E-Mail injection is possible when the mailing script fails to check for the presence of e-mail headers in user input (either form fields or URL parameters). The vulnerability exists in the reference implementation of the built-in “mail” functionality in popular languages like PHP, Java, Python, and Ruby. With the proper injection string, this vulnerability can be exploited to inject additional headers and/or modify existing headers in an e-mail message, allowing an attacker to completely alter the content of the e-mail.

This thesis develops a scalable mechanism to automatically detect E-Mail Header Injection vulnerability and uses this mechanism to quantify the prevalence of E- Mail Header Injection vulnerabilities on the Internet. Using a black-box testing approach, the system crawled 21,675,680 URLs to find URLs which contained form fields. 6,794,917 such forms were found by the system, of which 1,132,157 forms contained e-mail fields. The system used this data feed to discern the forms that could be fuzzed with malicious payloads. Amongst the 934,016 forms tested, 52,724 forms were found to be injectable with more malicious payloads. The system tested 46,156 of these and was able to find 496 vulnerable URLs across 222 domains, which proves that the threat is widespread and deserves future research attention.
ContributorsChandramouli, Sai Prashanth (Author) / Doupe, Adam (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Zhao, Ziming (Committee member) / Arizona State University (Publisher)
Created2016
155696-Thumbnail Image.png
Description
The ease of programmability in Software-Defined Networking (SDN) makes it a great platform for implementation of various initiatives that involve application deployment, dynamic topology changes, and decentralized network management in a multi-tenant data center environment. However, implementing security solutions in such an environment is fraught with policy conflicts and consistency

The ease of programmability in Software-Defined Networking (SDN) makes it a great platform for implementation of various initiatives that involve application deployment, dynamic topology changes, and decentralized network management in a multi-tenant data center environment. However, implementing security solutions in such an environment is fraught with policy conflicts and consistency issues with the hardness of this problem being affected by the distribution scheme for the SDN controllers.

In this dissertation, a formalism for flow rule conflicts in SDN environments is introduced. This formalism is realized in Brew, a security policy analysis framework implemented on an OpenDaylight SDN controller. Brew has comprehensive conflict detection and resolution modules to ensure that no two flow rules in a distributed SDN-based cloud environment have conflicts at any layer; thereby assuring consistent conflict-free security policy implementation and preventing information leakage. Techniques for global prioritization of flow rules in a decentralized environment are presented, using which all SDN flow rule conflicts are recognized and classified. Strategies for unassisted resolution of these conflicts are also detailed. Alternately, if administrator input is desired to resolve conflicts, a novel visualization scheme is implemented to help the administrators view the conflicts in an aesthetic manner. The correctness, feasibility and scalability of the Brew proof-of-concept prototype is demonstrated. Flow rule conflict avoidance using a buddy address space management technique is studied as an alternate to conflict detection and resolution in highly dynamic cloud systems attempting to implement an SDN-based Moving Target Defense (MTD) countermeasures.
ContributorsPisharody, Sandeep (Author) / Huang, Dijiang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Syrotiuk, Violet (Committee member) / Doupe, Adam (Committee member) / Arizona State University (Publisher)
Created2017
155634-Thumbnail Image.png
Description
Scientific workflows allow scientists to easily model and express the entire data processing steps, typically as a directed acyclic graph (DAG). These scientific workflows are made of a collection of tasks that usually take a long time to compute and that produce a considerable amount of intermediate datasets. Because

Scientific workflows allow scientists to easily model and express the entire data processing steps, typically as a directed acyclic graph (DAG). These scientific workflows are made of a collection of tasks that usually take a long time to compute and that produce a considerable amount of intermediate datasets. Because of the nature of scientific exploration, a scientific workflow can be modified and re-run multiple times, or new scientific workflows are created that might make use of past intermediate datasets. Storing intermediate datasets has the potential to save time in computations. Since storage is limited, one main problem that needs a solution is determining which intermediate datasets need to be saved at creation time in order to minimize the computational time of the workflows to be run in the future. This research thesis proposes the design and implementation of Pingo, a system that is capable of managing the computations of scientific workflows as well as the storage, provenance and deletion of intermediate datasets. Pingo uses the history of workflows submitted to the system to predict the most likely datasets to be needed in the future, and subjects the decision of dataset deletion to the optimization of the computational time of future workflows.
Contributorsde Armas, Jadiel (Author) / Bazzi, Rida (Thesis advisor) / Huang, Dijiang (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2017
137627-Thumbnail Image.png
Description
Polar ice masses can be valuable indicators of trends in global climate. In an effort to better understand the dynamics of Arctic ice, this project analyzes sea ice concentration anomaly data collected over gridded regions (cells) and builds graphs based upon high correlations between cells. These graphs offer the opportunity

Polar ice masses can be valuable indicators of trends in global climate. In an effort to better understand the dynamics of Arctic ice, this project analyzes sea ice concentration anomaly data collected over gridded regions (cells) and builds graphs based upon high correlations between cells. These graphs offer the opportunity to use metrics such as clustering coefficients and connected components to isolate representative trends in ice masses. Based upon this analysis, the structure of sea ice graphs differs at a statistically significant level from random graphs, and several regions show erratically decreasing trends in sea ice concentration.
ContributorsWallace-Patterson, Chloe Rae (Author) / Syrotiuk, Violet (Thesis director) / Colbourn, Charles (Committee member) / Montgomery, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
135810-Thumbnail Image.png
Description
The meta-MAC protocol is a systematic and automatic method to dynamically combine any set of existing Medium Access Control (MAC) protocols into a single higher level MAC protocol. The meta-MAC concept was proposed more than a decade ago, but until now has not been implemented in a testbed environment due

The meta-MAC protocol is a systematic and automatic method to dynamically combine any set of existing Medium Access Control (MAC) protocols into a single higher level MAC protocol. The meta-MAC concept was proposed more than a decade ago, but until now has not been implemented in a testbed environment due to a lack of suitable hardware. This thesis presents a proof-of-concept implementation of the meta-MAC protocol by utilizing a programmable radio platform, the Wireless MAC Processor (WMP), in combination with a host-level software module. The implementation of this host module, and the requirements and challenges faced therein, is the primary subject of this thesis. This implementation can combine, with certain constraints, a set of protocols each represented as an extended finite state machine for easy programmability. To illustrate the combination principle, protocols of the same type but with varying parameters are combined in a testbed environment, in what is termed parameter optimization. Specifically, a set of TDMA protocols with differing slot assignments are experimentally combined. This experiment demonstrates that the meta-MAC implementation rapidly converges to non-conflicting TDMA slot assignments for the nodes, with similar results to those in simulation. This both validates that the presented implementation properly implements the meta-MAC protocol, and verifies that the meta-MAC protocol can be as effective on real wireless hardware as it is in simulation.
ContributorsFlick, Nathaniel Graham (Author) / Syrotiuk, Violet (Thesis director) / Fainekos, Georgios (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
157771-Thumbnail Image.png
Description
At modern-day intersections, traffic lights and stop signs assist human drivers to cross the intersection safely. Traffic congestion in urban road networks is a costly problem that affects all major cities. Efficiently operating intersections is largely dependent on accuracy and precision of human drivers, engendering a lingering uncertainty of attaining

At modern-day intersections, traffic lights and stop signs assist human drivers to cross the intersection safely. Traffic congestion in urban road networks is a costly problem that affects all major cities. Efficiently operating intersections is largely dependent on accuracy and precision of human drivers, engendering a lingering uncertainty of attaining safety and high throughput. To improve the efficiency of the existing traffic network and mitigate the effects of human error in the intersection, many studies have proposed autonomous, intelligent transportation systems. These studies often involve utilizing connected autonomous vehicles, implementing a supervisory system, or both. Implementing a supervisory system is relatively more popular due to the security concerns of vehicle-to-vehicle communication. Even though supervisory systems are a step in the right direction for security, many supervisory systems’ safe operation solely relies on the promise of connected data being correct, making system reliability difficult to achieve. To increase fault-tolerance and decrease the effects of position uncertainty, this thesis proposes the Reliable and Robust Intersection Manager, a supervisory system that uses a separate surveillance system to dependably detect vehicles present in the intersection in order to create data redundancy for more accurate scheduling of connected autonomous vehicles. Adding the Surveillance System ensures that the temporal safety buffers between arrival times of connected autonomous vehicles are maintained. This guarantees that connected autonomous vehicles can traverse the intersection safely in the event of large vehicle controller error, a single rogue car entering the intersection, or a sybil attack. To test the proposed system given these fault-models, MATLAB® was used to create simulations in order to observe the functionality of R2IM compared to the state-of-the-art supervisory system, Robust Intersection Manager. Though R2IM is less efficient than the Robust Intersection Manager, it considers more fault models. The Robust Intersection Manager failed to maintain safety in the event of large vehicle controller errors and rogue cars, however R2IM resulted in zero collisions.
ContributorsDedinsky, Rachel (Author) / Shrivastava, Aviral (Thesis advisor) / Sen, Arunabha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2019