Matching Items (1,622)
Filtering by

Clear all filters

151984-Thumbnail Image.png
Description
There has been much interest in photoelectrochemical conversion of solar energy in recent years due to its potential for low-–cost, sustainable and renewable production of fuels. Despite the huge potential, there are still a number of technical barriers due to the many constraints needed in order to drive photoelectrochemical reactions

There has been much interest in photoelectrochemical conversion of solar energy in recent years due to its potential for low-–cost, sustainable and renewable production of fuels. Despite the huge potential, there are still a number of technical barriers due to the many constraints needed in order to drive photoelectrochemical reactions such as overall water splitting and the identification of efficient and effective semiconductor materials. To this end, the search for novel semiconductors that can act as light absorbers is still needed. The copper hydroxyphosphate mineral libethenite (CHP), which has a chemical formula of Cu2(OH)PO4, has been recently shown to be active for photocatalytic degradation of methylene blue under UV-–irradiation, indicating that photo-excited electrons and holes can effectively be generated and separated in this material. However, CHP has not been well studied and many of its fundamental electrochemical and photoelectrochemical properties are still unknown. In this work, the synthesis of different morphologies of CHP using hydrothermal synthesis and precipitation methods were explored. Additionally, a preliminary investigation of the relevant fundamental characteristics such as the bandgap, flatband potential, band diagram, electrochemical and photoelectrochemical properties for CHP was performed. Better understanding of the properties of this material may lead to the development of improved catalysts and photocatalysts from natural sources.
ContributorsLi, Man (Author) / Chan, Candace K. (Thesis advisor) / O'Connell, Michael (Committee member) / Crozier, Peter (Committee member) / Arizona State University (Publisher)
Created2013
152655-Thumbnail Image.png
Description
Solar energy is a promising alternative for addressing the world's current and future energy requirements in a sustainable way. Because solar irradiation is intermittent, it is necessary to store this energy in the form of a fuel so it can be used when required. The light-driven splitting of water into

Solar energy is a promising alternative for addressing the world's current and future energy requirements in a sustainable way. Because solar irradiation is intermittent, it is necessary to store this energy in the form of a fuel so it can be used when required. The light-driven splitting of water into oxygen and hydrogen (a useful chemical fuel) is a fascinating theoretical and experimental challenge that is worth pursuing because the advance of the knowledge that it implies and the availability of water and sunlight. Inspired by natural photosynthesis and building on previous work from our laboratory, this dissertation focuses on the development of water-splitting dye-sensitized photoelectrochemical tandem cells (WSDSPETCs). The design, synthesis, and characterization of high-potential porphyrins and metal-free phthalocyanines with phosphonic anchoring groups are reported. Photocurrents measured for WSDSPETCs made with some of these dyes co-adsorbed with molecular or colloidal catalysts on TiO2 electrodes are reported as well. To guide in the design of new molecules we have used computational quantum chemistry extensively. Linear correlations between calculated frontier molecular orbital energies and redox potentials were built and tested at multiple levels of theory (from semi-empirical methods to density functional theory). Strong correlations (with r2 values > 0.99) with very good predictive abilities (rmsd < 50 mV) were found when using density functional theory (DFT) combined with a continuum solvent model. DFT was also used to aid in the elucidation of the mechanism of the thermal relaxation observed for the charge-separated state of a molecular triad that mimics the photo-induced proton coupled electron transfer of the tyrosine-histidine redox relay in the reaction center of Photosystem II. It was found that the inclusion of explicit solvent molecules, hydrogen bonded to specific sites within the molecular triad, was essential to explain the observed thermal relaxation. These results are relevant for both advancing the knowledge about natural photosynthesis and for the future design of new molecules for WSDSPETCs.
ContributorsMéndez-Hernández, Dalvin D (Author) / Moore, Ana L (Thesis advisor) / Mujica, Vladimiro (Thesis advisor) / Gust, Devens J. (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
152328-Thumbnail Image.png
Description
Novel materials for Li-ion batteries is one of the principle thrust areas for current research in energy storage, more so than most, considering its widespread use in portable electronic gadgets and plug-in electric and hybrid cars. One of the major limiting factors in a Li-ion battery's energy density is the

Novel materials for Li-ion batteries is one of the principle thrust areas for current research in energy storage, more so than most, considering its widespread use in portable electronic gadgets and plug-in electric and hybrid cars. One of the major limiting factors in a Li-ion battery's energy density is the low specific capacities of the active materials in the electrodes. In the search for high-performance anode materials for Li-ion batteries, many alternatives to carbonaceous materials have been studied. Both cubic and amorphous silicon can reversibly alloy with lithium and have a theoretical capacity of 3500 mAh/g, making silicon a potential high density anode material. However, a large volume expansion of 300% occurs due to changes in the structure during lithium insertion, often leading to pulverization of the silicon. To this end, a class of silicon based cage compounds called clathrates are studied for electrochemical reactivity with lithium. Silicon-clathrates consist of silicon covalently bonded in cage structures comprised of face sharing Si20, Si24 and/or Si28 clusters with guest ions occupying the interstitial positions in the polyhedra. Prior to this, silicon clathrates have been studied primarily for their superconducting and thermoelectric properties. In this work, the synthesis and electrochemical characterization of two categories of silicon clathrates - Type-I silicon clathrate with aluminum framework substitution and barium guest ions (Ba8AlxSi46-x) and Type-II silicon clathrate with sodium guest ions (Nax Si136), are explored. The Type-I clathrate, Ba8AlxSi46-x consists of an open framework of aluminium and silicon, with barium (guest) atoms occupying the interstitial positions. X-ray diffraction studies have shown that a crystalline phase of clathrate is obtained from synthesis, which is powdered to a fine particle size to be used as the anode material in a Li-ion battery. Electrochemical measurements of these type of clathrates have shown that capacities comparable to graphite can be obtained for up to 10 cycles and lower capacities can be obtained for up to 20 cycles. Unlike bulk silicon, the clathrate structure does not undergo excessive volume change upon lithium intercalation, and therefore, the crystal structure is morphologically stable over many cycles. X-ray diffraction of the clathrate after cycling showed that crystallinity is intact, indicating that the clathrate does not collapse during reversible intercalation with lithium ions. Electrochemical potential spectroscopy obtained from the cycling data showed that there is an absence of formation of lithium-silicide, which is the product of lithium alloying with diamond cubic silicon. Type II silicon clathrate, NaxSi136, consists of silicon making up the framework structure and sodium (guest) atoms occupying the interstitial spaces. These clathrates showed very high capacities during their first intercalation cycle, in the range of 3,500 mAh/g, but then deteriorated during subsequent cycles. X-ray diffraction after one cycle showed the absence of clathrate phase and the presence of lithium-silicide, indicating the disintegration of clathrate structure. This could explain the silicon-like cycling behavior of Type II clathrates.
ContributorsRaghavan, Rahul (Author) / Chan, Candace K. (Thesis advisor) / Crozier, Peter (Committee member) / Petuskey, William T (Committee member) / Arizona State University (Publisher)
Created2013
151068-Thumbnail Image.png
Description
Lithium-ion batteries can fail and catch fire when overcharged, exposed to high temperatures or short-circuited due to the highly flammable organic liquid used in the electrolyte. Using inorganic solid electrolyte materials can potentially improve the safety factor. Additionally, nanostructured electrolyte materials may further enhanced performance by taking advantage of their

Lithium-ion batteries can fail and catch fire when overcharged, exposed to high temperatures or short-circuited due to the highly flammable organic liquid used in the electrolyte. Using inorganic solid electrolyte materials can potentially improve the safety factor. Additionally, nanostructured electrolyte materials may further enhanced performance by taking advantage of their large aspect ratio. In this work, the synthesis of two promising nanostructured solid electrolyte materials was explored. Amorphous lithium niobate nanowires were synthesized through the decomposition of a niobium-containing complex in a structure-directing solvent using a reflux method. Lithium lanthanum titanate was obtained via solid state reaction with titanium oxide nanowires as the titanium precursor, but the nanowire morphology could not be preserved due to high temperature sintering. Hyperbranched potassium lanthanum titanate was synthesized through hydrothermal route. This was the first time that hyperbranched nanowires with perovskite structure were made without any catalyst or substrate. This result has the potential to be applied to other perovskite materials.
ContributorsYang, Ting (Author) / Chan, Candace K. (Thesis advisor) / Crozier, Peter A. (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2012
151158-Thumbnail Image.png
Description
Molecular dynamics simulations were used to study properties of water at the interface with nanometer-size solutes. We simulated nonpolar attractive Kihara cavities given by a Lennard-Jones potential shifted by a core radius. The dipolar response of the hydration layer to a uniform electric field substantially exceeds that of the bulk.

Molecular dynamics simulations were used to study properties of water at the interface with nanometer-size solutes. We simulated nonpolar attractive Kihara cavities given by a Lennard-Jones potential shifted by a core radius. The dipolar response of the hydration layer to a uniform electric field substantially exceeds that of the bulk. For strongly attractive solutes, the collective dynamics of the hydration layer become slow compared to bulk water, as the solute size is increased. The statistics of electric field fluctuations at the solute center are Gaussian and tend toward the dielectric continuum limit with increasing solute size. A dipolar probe placed at the center of the solute is sensitive neither to the polarity excess nor to the slowed dynamics of the hydration layer. A point dipole was introduced close to the solute-water interface to further study the statistics of electric field fluctuations generated by the water. For small dipole magnitudes, the free energy surface is single-welled, with approximately Gaussian statistics. When the dipole is increased, the free energy surface becomes double-welled, before landing in an excited state, characterized again by a single-welled surface. The intermediate region is fairly broad and is characterized by electrostatic fluctuations significantly in excess of the prediction of linear response. We simulated a solute having the geometry of C180 fullerene, with dipoles introduced on each carbon. For small dipole moments, the solvent response follows the results seen for a single dipole; but for larger dipole magnitudes, the fluctuations of the solute-solvent energy pass through a second maximum. The juxtaposition of the two transitions leads to an approximately cubic scaling of the chemical potential with the dipole strengh. Umbrella sampling techniques were used to generate free energy surfaces of the electric potential fluctuations at the heme iron in Cytochrome B562. The results were unfortunately inconclusive, as the ionic background was not effectively represented in the finite-size system.
ContributorsFriesen, Allan Dwayne (Author) / Matyushov, Dmitry V (Thesis advisor) / Angell, C Austen (Thesis advisor) / Beckstein, Oliver (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2012
154122-Thumbnail Image.png
Description
Waste heat energy conversion remains an inviting subject for research, given the renewed emphasis on energy efficiency and carbon emissions reduction. Solid-state thermoelectric devices have been widely investigated, but their practical application remains challenging because of cost and the inability to fabricate them in geometries that are easily compatible

Waste heat energy conversion remains an inviting subject for research, given the renewed emphasis on energy efficiency and carbon emissions reduction. Solid-state thermoelectric devices have been widely investigated, but their practical application remains challenging because of cost and the inability to fabricate them in geometries that are easily compatible with heat sources. An intriguing alternative to solid-state thermoelectric devices is thermogalvanic cells, which include a generally liquid electrolyte that permits the transport of ions. Thermogalvanic cells have long been known in the electrochemistry community, but have not received much attention from the thermal transport community. This is surprising given that their performance is highly dependent on controlling both thermal and mass (ionic) transport. This research will focus on a research project, which is an interdisciplinary collaboration between mechanical engineering (i.e. thermal transport) and chemistry, and is a largely experimental effort aimed at improving fundamental understanding of thermogalvanic systems. The first part will discuss how a simple utilization of natural convection within the cell doubles the maximum power output of the cell. In the second part of the research, some of the results from the previous part will be applied in a feasibility study of incorporating thermogalvanic waste heat recovery systems into automobiles. Finally, a new approach to enhance Seebeck coefficient by tuning the configurational entropy of a mixed-ligand complex formation of copper sulfate aqueous electrolytes will be presented. Ultimately, a summary of these results as well as possible future work that can be formed from these efforts is discussed.
ContributorsGunawan, Andrey (Author) / Phelan, Patrick E (Thesis advisor) / Buttry, Daniel A (Committee member) / Mujica, Vladimiro (Committee member) / Chan, Candace K. (Committee member) / Wang, Robert Y (Committee member) / Arizona State University (Publisher)
Created2015
154016-Thumbnail Image.png
Description
Carbon nanomaterials have caught tremendous attention in the last few decades due to their unique physical and chemical properties. Tremendous effort has been made to develop new synthesis techniques for carbon nanomaterials and investigate their properties for different applications. In this work, carbon nanospheres (CNSs), carbon foams (CF), and single-walled

Carbon nanomaterials have caught tremendous attention in the last few decades due to their unique physical and chemical properties. Tremendous effort has been made to develop new synthesis techniques for carbon nanomaterials and investigate their properties for different applications. In this work, carbon nanospheres (CNSs), carbon foams (CF), and single-walled carbon nanotubes (SWNTs) were studied for various applications, including water treatment, energy storage, actuators, and sensors.

A facile spray pyrolysis synthesis technique was developed to synthesize individual CNSs with specific surface area (SSA) up to 1106 m2/g. The hollow CNSs showed adsorption of up to 300 mg rhodamine B dye per gram carbon, which is more than 15 times higher than that observed for conventional carbon black. They were also evaluated as adsorbents for removal of arsenate and selenate from water and displayed good binding to both species, outperforming commercial activated carbons for arsenate removal in pH > 8. When evaluated as supercapacitor electrode materials, specific capacitances of up to 112 F/g at a current density of 0.1 A/g were observed. When used as Li-ion battery anode materials, the CNSs achieved a discharge capacity of 270 mAh/g at a current density of 372 mA/g (1C), which is 4-fold higher than that of commercial graphite anode.

Carbon foams were synthesized using direct pyrolysis and had SSA up to 2340 m2/g. When used as supercapacitor electrode materials, a specific capacitance up to 280 F/g was achieved at current density of 0.1 A/g and remained as high as 207 F/g, even at a high current density of 10 A/g.

A printed walking robot was made from common plastic films and coatings of SWNTs. The solid-state thermal bimorph actuators were multifunctional energy transducers powered by heat, light, or electricity. The actuators were also investigated for photo/thermal detection. Electrochemical actuators based on MnO2 were also studied for potential underwater applications.

SWNTs were also used to fabricate printable electrodes for trace Cr(VI) detection, which displayed sensitivity up to 500 nA/ppb for Cr(VI). The limit of detection was shown to be as low as 5 ppb. A flow detection system based on CNT/printed electrodes was also demonstrated.
ContributorsWang, Chengwei, Ph.D (Author) / Chan, Candace K. (Thesis advisor) / Tongay, Sefaattin (Committee member) / Wang, Qing Hua (Committee member) / Seo, Dong (Committee member) / Arizona State University (Publisher)
Created2015
156532-Thumbnail Image.png
Description
As selenium and chromium are toxic even at low levels, it is very necessary to remove them from drinking water with proper ways. In this work, titanium dioxide based photocatalysts were mainly investigated in detail for their photoreduction ability towards selenate and chromate in aqueous environment. Firstly, photoreduction ability of

As selenium and chromium are toxic even at low levels, it is very necessary to remove them from drinking water with proper ways. In this work, titanium dioxide based photocatalysts were mainly investigated in detail for their photoreduction ability towards selenate and chromate in aqueous environment. Firstly, photoreduction ability of layered double hydroxide (LDH) nanosheets with commercial TiO2 particle hybrid materials was investigated towards selenate or chromate. The results showed that commercial LDH/TiO2 (P90) composite, homemade LDH nanosheets/TiO2 (P90) composite and also in situ LDH/TiO2 (P25) composite all did not indicate significant improvement on photoreduction performance towards selenate or chromate. Secondly, TiO2 nanosheets material was synthesized with TiS2 as precursor via hydrothermal treatment. Morphology of TiO2 nanosheets were characterized by SEM, AFM and TEM. Photodegradation of MB (methylene blue) with TiO2 nanosheets was performed. In the future, first approach is to synthesize visible-light driven LDH photocatalyst NiFe-LDH nanosheets with TiO2 nanosheets hybrid material for selenate removal. Second approach is to use anion intercalation/insertion via electrochemical process to remove anions in drinking water.
ContributorsJing, Hangkun (Author) / Chan, Candace K. (Thesis advisor) / Sieradzki, Karl (Committee member) / Wang, Qinghua (Committee member) / Arizona State University (Publisher)
Created2018
156550-Thumbnail Image.png
Description
Time-resolved serial femtosecond crystallography is an emerging method that allows for structural discovery to be performed on biomacromolecules during their dynamic trajectory through a reaction pathway after activation. This is performed by triggering a reaction on an ensemble of molecules in nano- or microcrystals and then using femtosecond X-ray

Time-resolved serial femtosecond crystallography is an emerging method that allows for structural discovery to be performed on biomacromolecules during their dynamic trajectory through a reaction pathway after activation. This is performed by triggering a reaction on an ensemble of molecules in nano- or microcrystals and then using femtosecond X-ray laser pulses produced by an X-ray free electron laser to collect near-instantaneous data on the crystal. A full data set can be collected by merging a sufficient number of these patterns together and multiple data sets can be collected at different points along the reaction pathway by manipulating the delay time between reaction initiation and the probing X-rays. In this way, these ‘snapshot’ structures can be viewed in series to make a molecular movie, allowing for atomic visualization of a molecule in action and, thereby, a structural basis for the mechanism and function of a given biomacromolecule.

This dissertation presents results towards this end, including the successful implementations of the first diffusive mixing chemoactivated reactions and ultrafast dynamics in the femtosecond regime. The primary focus is on photosynthetic membrane proteins and enzymatic drug targets, in pursuit of strategies for sustainable energy and medical advancement by gaining understanding of the structure-function relationships evolved in nature. In particular, photosystem I, photosystem II, the complex of photosystem I and ferredoxin, and 3-deoxy-D-manno-2-octulosonate-8-phosphate synthase are reported on, from purification and isolation, to crystallogenesis, to experimental design and data collection and subsequent interpretation of results and novel insights gained.
ContributorsCoe, Jesse (Author) / Fromme, Petra (Thesis advisor) / Sayres, Scott (Thesis advisor) / Mujica, Vladimiro (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2018
156795-Thumbnail Image.png
Description
New sol-gel routes based on peroxo complexes of early transition metals in a highly acidic medium were developed, to prepare metal oxide phosphates that feature structural protons. A sol-gel synthetic route was chosen because it allows atomic level mixing of precursors and lower heating temperatures, which are preferable in exploring

New sol-gel routes based on peroxo complexes of early transition metals in a highly acidic medium were developed, to prepare metal oxide phosphates that feature structural protons. A sol-gel synthetic route was chosen because it allows atomic level mixing of precursors and lower heating temperatures, which are preferable in exploring metastable phases. Titanium and molybdenum sol-gel chemistries were the focus of the initial studies and the synthesis of Ti1-xMoxP2O7 (x = 0 – 0.5) and Mo1-yTiyP2O8-y (y = 0 – 0.4) type metal oxide phosphates were explored. For the synthesis of the metal oxide phosphates, hydrogen peroxide was employed to prepare the respective precursor solutions. The peroxide ligand suppressed the immediate precipitation of metal cations in aqueous medium, by coordinating to Ti4+ and Mo6+ ions, and produced a soft wet-gel following polycondensation. Phosphoric acid was used to acidify the reaction medium and to provide protons and phosphate ions as structural components. From this synthetic route, a series of Ti1-xMoxP2O7 (x = 0 – 0.5) and Mo1-yTiyP2O8-y (y = 0 – 0.4) crystalline compounds, with various degrees of purity, were synthesized. For x = 0 and y = 0, the crystalline compounds TiP2O7 and MoP2O8 were produced, respectively, after calcining at 600 °C.

In pursuit of new metastable molybdenum oxide phosphate compounds, peroxo-molybdenum precursor mixtures with different molar ratios were treated gently by low-temperature heating. After controlled drying in a lab oven, MoO2(H2O)(HPO4) crystals were obtained as a highly crystalline pure product instead of a gel. The dissolution of MoO2(H2O)(HPO4) in water and precipitation with a CsCl solution produced a new crystalline compound with a cubic unit cell (a = 11.8(2) Å). Further studies will lead to crystal structure determination and elucidation of the aqueous chemistry of MoO2(H2O)(HPO4).
ContributorsAbeysooriya, Shanika (Author) / Seo, Dong K (Thesis advisor) / Chan, Candace K. (Committee member) / Trovitch, Ryan J (Committee member) / Arizona State University (Publisher)
Created2018