Matching Items (486)
Filtering by

Clear all filters

131289-Thumbnail Image.png
Description
The paper analyzes the growing desire to use waste-to-energy strategies on municipal solid waste (MSW) to generate power. The two waste-to-energy technologies that will be explored are incineration and gasification. The background of these two technologies will be explained because incineration, which has been the pioneering technology for the past

The paper analyzes the growing desire to use waste-to-energy strategies on municipal solid waste (MSW) to generate power. The two waste-to-energy technologies that will be explored are incineration and gasification. The background of these two technologies will be explained because incineration, which has been the pioneering technology for the past century, has come to be rivaled by gasification with its unique purification feature. Following this section, gasification and incineration power generation are studied to conclude which technology is sounder. This study will be conducted via an analysis to find the thermal and exergetic efficiencies and emissions of each. After analyzing the two technologies, both utilizing a vapor cogeneration power system, their efficiencies were found. For the gasification process, the thermal efficiency was 26% and the exergetic efficiency was 59%. The incineration process had a thermal efficiency of 25% and an exergetic efficiency of 55%. Lastly, the emission from the power generation of each method was explored to see which system had a greater impact on the environment. It was found that the primary emissions of these technologies were carbon dioxide and water.
ContributorsJackson, Cole Alan (Author) / Deng, Shuguang (Thesis director) / Milcarek, Ryan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131304-Thumbnail Image.png
Description
Traumatic brain injuries and the effects they can bring are becoming the main focus among researchers and physicians. Cycling is the leading sport with the most traumatic brain injuries, but the design of the cycling helmet has stayed the same for decades now. The technology of a bike is constantly

Traumatic brain injuries and the effects they can bring are becoming the main focus among researchers and physicians. Cycling is the leading sport with the most traumatic brain injuries, but the design of the cycling helmet has stayed the same for decades now. The technology of a bike is constantly getting developed and testing but the helmet is lagging behind. This project consists of designing and testing different cycling helmets through ANSYS simulations to determine the ideal geometry and features a cycling helmet must include, reducing the stress that the head experiences upon impact during a fall.
ContributorsDorman, Kyle Joseph (Author) / Kosaraju, Srinivas (Thesis director) / Bacalzo, Dean (Committee member) / Murthy, Raghavendra (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131408-Thumbnail Image.png
Description
Advancements in the field of design and control of lower extremity robotics requires a comprehensive understanding of the underlying mechanics of the human ankle. The ankle joint acts as an essential interface between the neuromuscular system of the body and the physical world, especially during locomotion. This paper investigates how

Advancements in the field of design and control of lower extremity robotics requires a comprehensive understanding of the underlying mechanics of the human ankle. The ankle joint acts as an essential interface between the neuromuscular system of the body and the physical world, especially during locomotion. This paper investigates how the modulation of ankle stiffness is altered throughout the stance phase of the gait cycle depending on the environment the ankle is interacting with. Ten young healthy subjects with no neurological impairments or history of ankle injury were tested by walking over a robotic platform which collected torque and position data. The platform performed a perturbation on the ankle at 20%, 40%, and 60% of their stance phase in order to estimate ankle stiffness and evaluate if the environment plays a role on its modulation. The platform provided either a rigid environment or a compliant environment in which it was compliant and deflected according to the torque applied to the platform. Subjects adapted in different ways to achieve balance in the different environments. When comparing the environments, subjects modulated their stiffness to either increase, decrease, or remain the same. Notably, stiffness as well as the subjects’ center of pressure was found to increase with time as they transitioned from late loading to terminal stance (heel strike to toe-off) regardless of environmental conditions. This allowed for a model of ankle stiffness to be developed as a function of center of pressure, independent of whether a subject is walking on the rigid or compliant environment. The modulation of stiffness parameters characterized in this study can be used in the design and control of lower extremity robotics which focus on accurate biomimicry of the healthy human ankle. The stiffness characteristics can also be used to help identify particular ankle impairments and to design proper treatment for individuals such as those who have suffered from a stroke or MS. Changing environments is where a majority of tripping incidents occur, which can lead to significant injuries. For this reason, studying healthy ankle behavior in a variety of environments is of particular interest.
ContributorsBliss, Clayton F (Author) / Lee, Hyunglae (Thesis director) / Marvi, Hamid (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131428-Thumbnail Image.png
Description
The ASU Compact X-ray Free Electron Laser (CXFEL) is a first of its kind instrument that will illuminate the processes of life and allow scientists to create more effective treatments for disease. The dimensions of the linear accelerator (LINAC) cavities must remain stable during operation, for a change in the

The ASU Compact X-ray Free Electron Laser (CXFEL) is a first of its kind instrument that will illuminate the processes of life and allow scientists to create more effective treatments for disease. The dimensions of the linear accelerator (LINAC) cavities must remain stable during operation, for a change in the geometry alters the standing wave microwave energy resonance within the cavities and leads to reflected rather than coupled and useful microwave energy to electric field coupling. This disturbs the electron bunch acceleration dynamics critical to the ultimate generation of x-ray pulses. Cooling water must be supplied to the electron generating RF-GUN, and linear accelerator (LINAC) structures at unique flowrate and temperature setpoints that are specific to the operating mode of the CXFEL. Design specifications for the water supply to the RF-GUN and three LINACs and were made for the nominal operating mode, which adds a 3 kW heat load to the water. To maintain steady cavity dimensions, water must be supplied to each device under test at 30.0 ºC ± 0.06 ºC. The flowrate of water must be 3.5 GPM to the RF-GUN and 2.5 GPM to each of the three LINACs with ± 0.01 GPM flowrate resolution. The primary function of the Dedicated-Precision Thermal Trim Unit (D-PTTU) is to control the flowrate and temperature of water supply to each device under test. A simplified model of the system was developed to select valves that would meet our design specifications for flowrate and temperature control. After using this model for valve selection, a detailed system model was created to simulate relevant coupled-domain physics of the integrated system. The detailed system model was used to determine the critical sensitivities of the system and will be used to optimize the performance of the system in the future. Before the detailed system model can be verified and tuned with experiments, the sensors were calibrated in an ice-bath to ensure the sensors measure accurate and precise values. During initial testing, the D-PTTU was able to achieve ± 0.02 ºC temperature resolution, which exceeds the design specification by a factor of three.
ContributorsGardeck, Alex John (Author) / Holl, Mark (Thesis director) / Smith, Dean (Committee member) / Department of Physics (Contributor) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131442-Thumbnail Image.png
Description
The objective of this project is to design an indraft supersonic wind tunnel that is safe and comparatively simple to construct. The processes and methodology of design are discussed. As with every supersonic wind tunnel, the critical components are the nozzle, diffuser, and the means of achieving the pressure differential

The objective of this project is to design an indraft supersonic wind tunnel that is safe and comparatively simple to construct. The processes and methodology of design are discussed. As with every supersonic wind tunnel, the critical components are the nozzle, diffuser, and the means of achieving the pressure differential which drives the flow. The nozzle was designed using method of characteristics (MOC) and a boundary layer analysis experimental proven on supersonic wind tunnels [5]. The diffuser was designed using the unique design features of this wind tunnel in combination with equations from Pope [7]. The pressure differential is achieved via a vacuum chamber behind the diffuser creating a pressure differential between the ambient air and the low pressure in the tank. The run time of the wind tunnel depends on the initial pressure of the vacuum tank and the volume. However, the volume of the tank has a greater influence on the run time. The volume of the tank is not specified as the largest tank feasible should be used to allow the longest run time. The run time for different volumes is given. Another method of extending the run duration is added vacuum pumps to the vacuum chamber. If these pumps can move a sufficient mass out of the vacuum chamber, the run time can be significantly extended. The mounting design addresses the loading requirements which is closely related to the accuracy of the data. The mounting mechanism is attached to the rear of the model to minimize shockwave interference and maximize the structural integrity along the direction with the highest loading. This mechanism is then mounted to the bottom of the wind tunnel for structural rigidity and ease of access.
ContributorsWall, Isaiah Edward (Author) / Wells, Valana (Thesis director) / Kshitij, Abhinav (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
This paper discusses the design of experimental setup and procedures to characterize polymethyl methylate (PMMA) at its glass transition temperature by studying its strain fields, process zone, and crack speed under different loading conditions. These loading conditions are different steady-state temperatures and initial crack lengths. Steady-state temperature testing uses a

This paper discusses the design of experimental setup and procedures to characterize polymethyl methylate (PMMA) at its glass transition temperature by studying its strain fields, process zone, and crack speed under different loading conditions. These loading conditions are different steady-state temperatures and initial crack lengths. Steady-state temperature testing uses a temperature control loop. Crack speed / resistivity testing is set up using a voltage drop method. From initial steady-state temperature testing, it was confirmed that the behavior of a PMMA sample becomes more ductile at higher temperatures, and that it is plausible for a crack process zone to be measured using DIC as temperature increases. From finite element simulations, it was validated that the crack speed is not constant relative to an initial crack length.
ContributorsKwan, Brandon (Author) / Oswald, Jay (Thesis director) / Hoover, Christian (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131242-Thumbnail Image.png
Description
This project aims to study the relationship between model input parameters and model output accuracy of the Tool for Automation of Computational Aerodynamics of Airfoils (TACAA). The input parameters of study are Mach number and Reynolds number, and inputs are tested through three flight speed regimes and from laminar to

This project aims to study the relationship between model input parameters and model output accuracy of the Tool for Automation of Computational Aerodynamics of Airfoils (TACAA). The input parameters of study are Mach number and Reynolds number, and inputs are tested through three flight speed regimes and from laminar to turbulent flow. Each of these input parameters are tested for the NACA 0012 and SC-1095 airfoils to ensure that the accuracy is similar regardless of geometric complexity. The TACAA program was used to run all simulation testing, and its overall functionality is discussed. The results gathered from the preliminary testing showed that the spread of variable input data points caused data gaps in the transonic regime results, which provided motivation to conduct further testing within the transonic region for both airfoils. After collecting all TACAA results, data from wind tunnel testing was compiled to compare. The comparison showed that (1) additional testing would be necessary to fully assess the accuracy of the results for the SC-1095 airfoil and (2) TACAA is generally accurate for compressible, turbulent flows.
ContributorsKuang, Joyce (Co-author) / Stickel, Hannah (Co-author) / Wells, Valana (Thesis director) / Duque, Earl (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131465-Thumbnail Image.png
Description
The temperature of exhaust pipes can be dangerous in dry areas where there is a lot of brush. The temperatures of exhaust pipes can reach a high enough temperature to start a fire if touching the dry brush, which ignites around 300°C. The goal of this project was to explore

The temperature of exhaust pipes can be dangerous in dry areas where there is a lot of brush. The temperatures of exhaust pipes can reach a high enough temperature to start a fire if touching the dry brush, which ignites around 300°C. The goal of this project was to explore different techniques to limit the possibility of these brush fires. Specifically, different methods were explored to reduce the temperature of the pipe that would be contacting the brush. Fires can begin within seconds of contacting the hot exhaust pipes [10]. This experiment found that of the three options tested: exhaust wrap, heat sink with thermoelectric devices, and high temperature paint, adding a heat shield/sink is the best way to limit the high temperatures from igniting the brush. There was a cooling difference of nearly 100°C when a heat shield/sink was added to the bare pipe. The additional thermal mass as well as the finned heat sinks attached to the heat sink helped dissipate the heat from the pipe and release the waste heat into the surroundings. The increase in surface area in correspondence with forced convection from the surrounding air lowered the temperature of the metal in contact with the dry brush.
ContributorsHodges, Andrew (Author) / Benson, David (Thesis director) / Bocanegra, Luis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131469-Thumbnail Image.png
Description
This thesis project examines the stability margin for different rotor configurations for a quadcopter and compares them against each other to determine the most stable flight configuration possible. The first configuration develops a “standard” for quadcopters with each motor in a corner of a cube at a 60-degree angle from

This thesis project examines the stability margin for different rotor configurations for a quadcopter and compares them against each other to determine the most stable flight configuration possible. The first configuration develops a “standard” for quadcopters with each motor in a corner of a cube at a 60-degree angle from the Y-Axis. The remaining tests increase the angle five degrees per configuration, allowing the motors to get incrementally closer to each other until no longer viable. Five different tests are outlined below depicting the microscopic changes in the pitch and roll of the device. The on-board controller in the quad-copter tracks both the acceleration and gyroscopic movements of the device to obtain the stability margin of each test. Computational analysis is then used to calculate and compare the values found to determine the most stable configuration.
ContributorsCorino, Tyler Michael (Author) / Kuo, Chen-Yuan (Thesis director) / Lynch, John (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131475-Thumbnail Image.png
Description
This study explores the relationship between three physics-based predictive models defined by Castruccio et al. (2013), and four different distinct experimental morphologies of lava flows produced in a series of laboratory simulations where polyethylene glycol 600 (PEG) was pumped into an inclined chilled bath of water. The length of the

This study explores the relationship between three physics-based predictive models defined by Castruccio et al. (2013), and four different distinct experimental morphologies of lava flows produced in a series of laboratory simulations where polyethylene glycol 600 (PEG) was pumped into an inclined chilled bath of water. The length of the experimental flow was recorded over time to create an experimental model to later be compared to the physics-based predictive models. The experimental morphologies are pillowed, rifted, folded, and leveed flows which can be characterized by a dimensionless parameter 𝛹, which scales natural lava flows to experimental lava flows and is a ratio of timescales, the characteristic timescale of thermal flux from the vent and the characteristic timescale of crust formation caused by surface cooling (Fink and Griffiths 1990). The three physics-based models are presented such that the downslope gravitational acceleration drives the flow, while either the Newtonian viscosity of the flow, the Yield Strength of the core (YS), or the Yield Strength of the growing crust (YSC) is the primary retarding factor in flow propagation. This study concluded that low 𝛹-value flows (low flux, low temperature, extensive crust formation) are better captured by the YSC model. And although the Newtonian model did not perfectly capture the behavior of any experimental flows in this study, high 𝛹-value flows (high flux, high temperature, little crust formation) that formed levees exhibited the most Newtonian behavior.
ContributorsCourtney, Cara Alexandra (Author) / Clarke, Amanda B. (Thesis director) / Huang, Huei-Ping (Committee member) / Williams, David A. (Committee member) / School of Sustainability (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05