Matching Items (356)
Filtering by

Clear all filters

152073-Thumbnail Image.png
Description
The effect of earthquake-induced liquefaction on the local void ratio distribution of cohesionless soil is evaluated using x-ray computed tomography (CT) and an advanced image processing software package. Intact, relatively undisturbed specimens of cohesionless soil were recovered before and after liquefaction by freezing and coring soil deposits created by pluviation

The effect of earthquake-induced liquefaction on the local void ratio distribution of cohesionless soil is evaluated using x-ray computed tomography (CT) and an advanced image processing software package. Intact, relatively undisturbed specimens of cohesionless soil were recovered before and after liquefaction by freezing and coring soil deposits created by pluviation and by sedimentation through water. Pluviated soil deposits were liquefied in the small geotechnical centrifuge at the University of California at Davis shared-use National Science Foundation (NSF)-supported Network for Earthquake Engineering Simulation (NEES) facility. A soil deposit created by sedimentation through water was liquefied on a small shake table in the Arizona State University geotechnical laboratory. Initial centrifuge tests employed Ottawa 20-30 sand but this material proved to be too coarse to liquefy in the centrifuge. Therefore, subsequent centrifuge tests employed Ottawa F60 sand. The shake table test employed Ottawa 20-30 sand. Recovered cores were stabilized by impregnation with optical grade epoxy and sent to the University of Texas at Austin NSF-supported facility at the University of Texas at Austin for high-resolution CT scanning of geologic media. The local void ratio distribution of a CT-scanned core of Ottawa 20-30 sand evaluated using Avizo® Fire, a commercially available advanced program for image analysis, was compared to the local void ratio distribution established on the same core by analysis of optical images to demonstrate that analysis of the CT scans gave similar results to optical methods. CT scans were subsequently conducted on liquefied and not-liquefied specimens of Ottawa 20-30 sand and Ottawa F60 sand. The resolution of F60 specimens was inadequate to establish the local void ratio distribution. Results of the analysis of the Ottawa 20-30 specimens recovered from the model built for the shake table test showed that liquefaction can substantially influence the variability in local void ratio, increasing the degree of non-homogeneity in the specimen.
ContributorsGutierrez, Angel (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2013
151747-Thumbnail Image.png
Description
Heating of asphalt during production and construction causes the volatilization and oxidation of binders used in mixes. Volatilization and oxidation causes degradation of asphalt pavements by increasing the stiffness of the binders, increasing susceptibility to cracking and negatively affecting the functional and structural performance of the pavements. Degradation of asphalt

Heating of asphalt during production and construction causes the volatilization and oxidation of binders used in mixes. Volatilization and oxidation causes degradation of asphalt pavements by increasing the stiffness of the binders, increasing susceptibility to cracking and negatively affecting the functional and structural performance of the pavements. Degradation of asphalt binders by volatilization and oxidation due to high production temperature occur during early stages of pavement life and are known as Short Term Aging (STA). Elevated temperatures and increased exposure time to elevated temperatures causes increased STA of asphalt. The objective of this research was to investigate how elevated mixing temperatures and exposure time to elevated temperatures affect aging and stiffening of binders, thus influencing properties of the asphalt mixtures. The study was conducted in two stages. The first stage evaluated STA effect of asphalt binders. It involved aging two Performance Graded (PG) virgin asphalt binders, PG 76-16 and PG 64-22 at two different temperatures and durations, then measuring their viscosities. The second stage involved evaluating the effects of elevated STA temperature and time on properties of the asphalt mixtures. It involved STA of asphalt mixtures produced in the laboratory with the PG 64-22 binder at mixing temperatures elevated 25OF above standard practice; STA times at 2 and 4 hours longer than standard practices, and then compacted in a gyratory compactor. Dynamic modulus (E*) and Indirect Tensile Strength (IDT) were measured for the aged mixtures for each temperature and duration to determine the effect of different aging times and temperatures on the stiffness and fatigue properties of the aged asphalt mixtures. The binder test results showed that in all cases, there was increased viscosity. The results showed the highest increase in viscosity resulted from increased aging time. The results also indicated that PG 64-22 was more susceptible to elevated STA temperature and extended time than the PG 76-16 binders. The asphalt mixture test results confirmed the expected outcome that increasing the STA and mixing temperature by 25oF alters the stiffness of mixtures. Significant change in the dynamic modulus mostly occurred at four hour increase in STA time regardless of temperature.
ContributorsLolly, Rubben (Author) / Kaloush, Kamil (Thesis advisor) / Bearup, Wylie (Committee member) / Zapata, Claudia (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151784-Thumbnail Image.png
Description
This work focuses on a generalized assessment of source zone natural attenuation (SZNA) at chlorinated aliphatic hydrocarbon (CAH) impacted sites. Given the numbers of sites and technical challenges for cleanup there is a need for a SZNA method at CAH impacted sites. The method anticipates that decision makers will be

This work focuses on a generalized assessment of source zone natural attenuation (SZNA) at chlorinated aliphatic hydrocarbon (CAH) impacted sites. Given the numbers of sites and technical challenges for cleanup there is a need for a SZNA method at CAH impacted sites. The method anticipates that decision makers will be interested in the following questions: 1-Is SZNA occurring and what processes contribute? 2-What are the current SZNA rates? 3-What are the longer-term implications? The approach is macroscopic and uses multiple lines-of-evidence. An in-depth application of the generalized non-site specific method over multiple site events, with sampling refinement approaches applied for improving SZNA estimates, at three CAH impacted sites is presented with a focus on discharge rates for four events over approximately three years (Site 1:2.9, 8.4, 4.9, 2.8kg/yr as PCE, Site 2:1.6, 2.2, 1.7, 1.1kg/y as PCE, Site 3:570, 590, 250, 240kg/y as TCE). When applying the generalized CAH-SZNA method, it is likely that different practitioners will not sample a site similarly, especially regarding sampling density on a groundwater transect. Calculation of SZNA rates is affected by contaminant spatial variability with reference to transect sampling intervals and density with variations in either resulting in different mass discharge estimates. The effects on discharge estimates from varied sampling densities and spacings were examined to develop heuristic sampling guidelines with practical site sampling densities; the guidelines aim to reduce the variability in discharge estimates due to different sampling approaches and to improve confidence in SZNA rates allowing decision-makers to place the rates in perspective and determine a course of action based on remedial goals. Finally bench scale testing was used to address longer term questions; specifically the nature and extent of source architecture. A rapid in-situ disturbance method was developed using a bench-scale apparatus. The approach allows for rapid identification of the presence of DNAPL using several common pilot scale technologies (ISCO, air-sparging, water-injection) and can identify relevant source architectural features (ganglia, pools, dissolved source). Understanding of source architecture and identification of DNAPL containing regions greatly enhances site conceptualization models, improving estimated time frames for SZNA, and possibly improving design of remedial systems.
ContributorsEkre, Ryan (Author) / Johnson, Paul Carr (Thesis advisor) / Rittmann, Bruce (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013
151835-Thumbnail Image.png
Description
Unsaturated soil mechanics is becoming a part of geotechnical engineering practice, particularly in applications to moisture sensitive soils such as expansive and collapsible soils and in geoenvironmental applications. The soil water characteristic curve, which describes the amount of water in a soil versus soil suction, is perhaps the most important

Unsaturated soil mechanics is becoming a part of geotechnical engineering practice, particularly in applications to moisture sensitive soils such as expansive and collapsible soils and in geoenvironmental applications. The soil water characteristic curve, which describes the amount of water in a soil versus soil suction, is perhaps the most important soil property function for application of unsaturated soil mechanics. The soil water characteristic curve has been used extensively for estimating unsaturated soil properties, and a number of fitting equations for development of soil water characteristic curves from laboratory data have been proposed by researchers. Although not always mentioned, the underlying assumption of soil water characteristic curve fitting equations is that the soil is sufficiently stiff so that there is no change in total volume of the soil while measuring the soil water characteristic curve in the laboratory, and researchers rarely take volume change of soils into account when generating or using the soil water characteristic curve. Further, there has been little attention to the applied net normal stress during laboratory soil water characteristic curve measurement, and often zero to only token net normal stress is applied. The applied net normal stress also affects the volume change of the specimen during soil suction change. When a soil changes volume in response to suction change, failure to consider the volume change of the soil leads to errors in the estimated air-entry value and the slope of the soil water characteristic curve between the air-entry value and the residual moisture state. Inaccuracies in the soil water characteristic curve may lead to inaccuracies in estimated soil property functions such as unsaturated hydraulic conductivity. A number of researchers have recently recognized the importance of considering soil volume change in soil water characteristic curves. The study of correct methods of soil water characteristic curve measurement and determination considering soil volume change, and impacts on the unsaturated hydraulic conductivity function was of the primary focus of this study. Emphasis was placed upon study of the effect of volume change consideration on soil water characteristic curves, for expansive clays and other high volume change soils. The research involved extensive literature review and laboratory soil water characteristic curve testing on expansive soils. The effect of the initial state of the specimen (i.e. slurry versus compacted) on soil water characteristic curves, with regard to volume change effects, and effect of net normal stress on volume change for determination of these curves, was studied for expansive clays. Hysteresis effects were included in laboratory measurements of soil water characteristic curves as both wetting and drying paths were used. Impacts of soil water characteristic curve volume change considerations on fluid flow computations and associated suction-change induced soil deformations were studied through numerical simulations. The study includes both coupled and uncoupled flow and stress-deformation analyses, demonstrating that the impact of volume change consideration on the soil water characteristic curve and the estimated unsaturated hydraulic conductivity function can be quite substantial for high volume change soils.
ContributorsBani Hashem, Elham (Author) / Houston, Sandra L. (Thesis advisor) / Kavazanjian, Edward (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2013
151293-Thumbnail Image.png
Description
Biofuel from microbial biomass is a viable alternative to current energy production practices that could mitigate greenhouse gas levels and reduce dependency on fossil fuels. Sustainable production of microbial biomass requires efficient utilization of nutrients like phosphorus (P). P is a limited resource which is vital for global food security.

Biofuel from microbial biomass is a viable alternative to current energy production practices that could mitigate greenhouse gas levels and reduce dependency on fossil fuels. Sustainable production of microbial biomass requires efficient utilization of nutrients like phosphorus (P). P is a limited resource which is vital for global food security. This paper seeks to understand the fate of P through biofuel production and proposes a proof-of-concept process to recover P from microbial biomass. The photosynthetic cyanobacterium Synechocystis sp. PCC 6803 is found to contain 1.4% P by dry weight. After the crude lipids are extracted for biofuel processing, 92% of the intercellular P is found within the residual biomass. Most intercellular P is associated with nucleic acids which remain within the cell after lipids are extracted. Phospholipids comprise a small percentage of cellular P. A wet chemical advanced oxidation process of adding 30% hydrogen peroxide followed by 10 min of microwave heating converts 92% of the total cellular P from organic-P and polyphosphate into orthophosphate. P was then isolated and concentrated from the complex digested matrix by use of resins. An anion exchange resin impregnated with iron nanoparticles demonstrates high affinity for P by sorbing 98% of the influent P through 20 bed volumes, but only was able to release 23% of it when regenerated. A strong base anion exchange resin sorbed 87% of the influent P through 20 bed volumes then released 50% of it upon regeneration. The overall P recovery process was able to recover 48% of the starting intercellular P into a pure and concentrated nutrient solution available for reuse. Further optimization of elution could improve P recovery, but this provides a proof-of-concept for converting residual biomass after lipid extraction to a beneficial P source.
ContributorsGifford, James McKay (Author) / Westerhoff, Paul (Thesis advisor) / Rittmann, Bruce (Committee member) / Vannela, Ravindhar (Committee member) / Arizona State University (Publisher)
Created2012
152596-Thumbnail Image.png
Description
This thesis presents a probabilistic evaluation of multiple laterally loaded drilled pier foundation design approaches using extensive data from a geotechnical investigation for a high voltage electric transmission line. A series of Monte Carlo simulations provide insight about the computed level of reliability considering site standard penetration test blow count

This thesis presents a probabilistic evaluation of multiple laterally loaded drilled pier foundation design approaches using extensive data from a geotechnical investigation for a high voltage electric transmission line. A series of Monte Carlo simulations provide insight about the computed level of reliability considering site standard penetration test blow count value variability alone (i.e., assuming all other aspects of the design problem do not contribute error or bias). Evaluated methods include Eurocode 7 Geotechnical Design procedures, the Federal Highway Administration drilled shaft LRFD design method, the Electric Power Research Institute transmission foundation design procedure and a site specific variability based approach previously suggested by the author of this thesis and others. The analysis method is defined by three phases: a) Evaluate the spatial variability of an existing subsurface database. b) Derive theoretical foundation designs from the database in accordance with the various design methods identified. c) Conduct Monti Carlo Simulations to compute the reliability of the theoretical foundation designs. Over several decades, reliability-based foundation design (RBD) methods have been developed and implemented to varying degrees for buildings, bridges, electric systems and other structures. In recent years, an effort has been made by researchers, professional societies and other standard-developing organizations to publish design guidelines, manuals and standards concerning RBD for foundations. Most of these approaches rely on statistical methods for quantifying load and resistance probability distribution functions with defined reliability levels. However, each varies with regard to the influence of site-specific variability on resistance. An examination of the influence of site-specific variability is required to provide direction for incorporating the concept into practical RBD design methods. Recent surveys of transmission line engineers by the Electric Power Research Institute (EPRI) demonstrate RBD methods for the design of transmission line foundations have not been widely adopted. In the absence of a unifying design document with established reliability goals, transmission line foundations have historically performed very well, with relatively few failures. However, such a track record with no set reliability goals suggests, at least in some cases, a financial premium has likely been paid.
ContributorsHeim, Zackary (Author) / Houston, Sandra (Thesis advisor) / Witczak, Matthew (Committee member) / Kavazanjian, Edward (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2014
152724-Thumbnail Image.png
Description
ABSTRACT Enzyme-Induced Carbonate Precipitation (EICP) using a plant-derived form of the urease enzyme to induce the precipitation of calcium carbonate (CaCO3) shows promise as a method of stabilizing soil for the mitigation of fugitive dust. Fugitive dust is a significant problem in Arizona, particularly in Maricopa County. Maricopa County is

ABSTRACT Enzyme-Induced Carbonate Precipitation (EICP) using a plant-derived form of the urease enzyme to induce the precipitation of calcium carbonate (CaCO3) shows promise as a method of stabilizing soil for the mitigation of fugitive dust. Fugitive dust is a significant problem in Arizona, particularly in Maricopa County. Maricopa County is an EPA air quality non-attainment zone, due primarily to fugitive dust, which presents a significant health risk to local residents. Conventional methods for fugitive dust control, including the application of water, are either ineffective in arid climates, very expensive, or limited to short term stabilization. Due to these limitations, engineers are searching for new and more effective ways to stabilize the soil and reduce wind erosion. EICP employs urea hydrolysis, a process in which carbonate precipitation is catalyzed by the urease enzyme, a widely occurring protein found in many plants and microorganisms. Wind tunnel experiments were conducted in the ASU/NASA Planetary Wind Tunnel to evaluate the use of EICP as a means to stabilize soil against fugitive dust emission. Three different soils were tested, including a native Arizona silty-sand, a uniform fine to medium grained silica sand, and mine tailings from a mine in southern Arizona. The test soil was loosely placed in specimen container and the surface was sprayed with an aqueous solution containing urea, calcium chloride, and urease enzyme. After a short period of time to allow for CaCO3 precipitation, the specimens were tested in the wind tunnel. The completed tests show that EICP can increase the detachment velocity compared to bare or wetted soil and thus holds promise as a means of mitigating fugitive dust emissions.
ContributorsKnorr, Brian (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2014
152792-Thumbnail Image.png
Description
Expansive soils impose challenges on the design, maintenance and long-term stability of many engineered infrastructure. These soils are composed of different clay minerals that are susceptible to changes in moisture content. Expansive clay soils wreak havoc due to their volume change property and, in many cases, exhibit extreme swelling and

Expansive soils impose challenges on the design, maintenance and long-term stability of many engineered infrastructure. These soils are composed of different clay minerals that are susceptible to changes in moisture content. Expansive clay soils wreak havoc due to their volume change property and, in many cases, exhibit extreme swelling and shrinking potentials. Understanding what type of minerals and clays react in the presence of water would allow for a more robust design and a better way to mitigate undesirable soil volume change. The relatively quick and widely used method of X-ray Diffraction (XRD) allows identifying the type of minerals present in the soil. As part of this study, three different clays from Colorado, San Antonio Texas, and Anthem Arizona were examined using XRD techniques. Oedometer-type testing was simultaneously preformed in the laboratory to benchmark the behavior of these soils. This analysis allowed performing comparative studies to determining if the XRD technique and interpretation methods currently available could serve as quantitative tools for estimating swell potential through mineral identification. The soils were analyzed using two different software protocols after being subjected to different treatment techniques. Important observations include the formation of Ettringite and Thaumasite, the effect of mixed-layer clays in the interpretation of the data, and the soils being subject to Gypsification. The swelling data obtained from the oedometer-type laboratory testing was compared with predictive swelling functions available from literature. A correlation analysis was attempted in order to find what index properties and mineralogy parameters were most significant to the swelling behavior of the soils. The analysis demonstrated that Gypsification is as important to the swelling potential of the soil as the presence of expansive clays; and it should be considered in the design and construction of structures in expansive soils. Also, the formation of Ettringite and Thaumasite observed during the treatment process validates the evidence of Delayed Ettringite Formation (DEF) reported in the literature. When comparing the measured results with a proposed method from the University of Texas at Arlington (UTA), it was found that the results were somewhat indicative of swell potential but did not explain all causes for expansivity. Finally, it was found that single index properties are not sufficient to estimate the free swell or the swell pressure of expansive soils. In order to have a significant correlation, two or more index properties should be combined when estimating the swell potential. When properties related to the soil mineralogy were correlated with swell potential parameters, the amount of Gypsum present in the soil seems to be as significant to the swell behavior of the soil as the amount of Smectite found.
ContributorsShafer, Zachery (Author) / Zapata, Claudia (Thesis advisor) / Kavazanjian, Edward (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2014
153311-Thumbnail Image.png
Description
Ground coupled heat pumps (GCHPs) have been used successfully in many environments to improve the heating and cooling efficiency of both small and large scale buildings. In arid climate regions, such as the Phoenix, Arizona metropolitan area, where the air condi-tioning load is dominated by cooling in the summer,

Ground coupled heat pumps (GCHPs) have been used successfully in many environments to improve the heating and cooling efficiency of both small and large scale buildings. In arid climate regions, such as the Phoenix, Arizona metropolitan area, where the air condi-tioning load is dominated by cooling in the summer, GCHPs are difficult to install and operate. This is because the nature of soils in arid climate regions, in that they are both dry and hot, renders them particularly ineffective at dissipating heat.

The first part of this thesis addresses applying the SVHeat finite element modeling soft-ware to create a model of a GCHP system. Using real-world data from a prototype solar-water heating system coupled with a ground-source heat exchanger installed in Menlo Park, California, a relatively accurate model was created to represent a novel GCHP panel system installed in a shallow vertical trench. A sensitivity analysis was performed to evaluate the accuracy of the calibrated model.

The second part of the thesis involved adapting the calibrated model to represent an ap-proximation of soil conditions in arid climate regions, using a range of thermal properties for dry soils. The effectiveness of the GCHP in the arid climate region model was then evaluated by comparing the thermal flux from the panel into the subsurface profile to that of the prototype GCHP. It was shown that soils in arid climate regions are particularly inefficient at heat dissipation, but that it is highly dependent on the thermal conductivity inputted into the model. This demonstrates the importance of proper site characterization in arid climate regions. Finally, several soil improvement methods were researched to evaluate their potential for use in improving the effectiveness of shallow horizontal GCHP systems in arid climate regions.
ContributorsNorth, Timothy James (Author) / Kavazanjian, Ed (Thesis advisor) / Redy, T. Agami (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2014
153332-Thumbnail Image.png
Description
In enzyme induced carbonate precipitation (EICP), calcium carbonate (CaCO3) precipitation is catalyzed by plant-derived urease enzyme. In EICP, urea hydrolyzes into ammonia and inorganic carbon, altering geochemical conditions in a manner that promotes carbonate mineral precipitation. The calcium source in this process comes from calcium chloride (CaCl2) in

In enzyme induced carbonate precipitation (EICP), calcium carbonate (CaCO3) precipitation is catalyzed by plant-derived urease enzyme. In EICP, urea hydrolyzes into ammonia and inorganic carbon, altering geochemical conditions in a manner that promotes carbonate mineral precipitation. The calcium source in this process comes from calcium chloride (CaCl2) in aqueous solution. Research work conducted for this dissertation has demonstrated that EICP can be employed for a variety of geotechnical purposes, including mass soil stabilization, columnar soil stabilization, and stabilization of erodible surficial soils. The research presented herein also shows that the optimal ratio of urea to CaCl2 at ionic strengths of less than 1 molar is approximately 1.75:1. EICP solutions of very high initial ionic strength (i.e. 6 M) as well as high urea concentrations (> 2 M) resulted in enzyme precipitation (salting-out) which hindered carbonate precipitation. In addition, the production of NH4+ may also result in enzyme precipitation. However, enzyme precipitation appeared to be reversible to some extent. Mass soil stabilization was demonstrated via percolation and mix-and-compact methods using coarse silica sand (Ottawa 20-30) and medium-fine silica sand (F-60) to produce cemented soil specimens whose strength improvement correlated with CaCO3 content, independent of the method employed to prepare the specimen. Columnar stabilization, i.e. creating columns of soil cemented by carbonate precipitation, using Ottawa 20-30, F-60, and native AZ soil was demonstrated at several scales beginning with small columns (102-mm diameter) and culminating in a 1-m3 soil-filled box. Wind tunnel tests demonstrated that surficial soil stabilization equivalent to that provided by thoroughly wetting the soil can be achieved through a topically-applied solution of CaCl2, urea, and the urease enzyme. The topically applied solution was shown to form an erosion-resistant CaCO3 crust on fine sand and silty soils. Cementation of erodible surficial soils was also achieved via EICP by including a biodegradable hydrogel in the stabilization solution. A dilute hydrogel solution extended the time frame over which the precipitation reaction could occur and provided improved spatial control of the EICP solution.
ContributorsHamdan, Nasser M (Author) / Kavazanjian Jr., Edward (Thesis advisor) / Rittmann, Bruce (Thesis advisor) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2015