Matching Items (23)
160731-Thumbnail Image.png
Description

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods and at varying times across days and/or months over the course of one year (July 15, 2020–July 14, 2021), allowing the team to study the impacts of the surface treatment under various weather conditions.

Created2021-09
171429-Thumbnail Image.png
Description
This is an applied research paper, where a micro campus was designed for the San Carlos Apache Community with a goal of meeting requirements for at least three petals of Living Building Challenge. The end goal was to submit recommendations for attaining the petal certifications. The process of design not

This is an applied research paper, where a micro campus was designed for the San Carlos Apache Community with a goal of meeting requirements for at least three petals of Living Building Challenge. The end goal was to submit recommendations for attaining the petal certifications. The process of design not only included following spatial requirements of designing the building, but also including a wider perspective of construction and energy management in it. The first step of the research was getting to know the community and their requirements and priorities. This was done in 1st semester as a part of an applied class Indigenous Project Delivery. The second part of the research was to design a micro campus for the community that is in sync with the main campus. The intent of design is to respect the community’s culture and help them pass it on to the next generation while abiding by the Living Building Challenge standards. The third step of this research was to back up the design with recommendations for petal certifications.
ContributorsSingaraju, Meghana (Author) / Costa, Wanda Dalla (Thesis advisor) / Coseo, Paul (Committee member) / Vekstein, Claudio (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2022
Description
This project is a collaboration between Arizona State University Project Cities, The Design School, and the City of Phoenix’s Water Services Department. The thesis is an exploration and analysis of feedback from Phoenix residents used to create an educational resource, which is intended to give Phoenix homeowners inspiration on how

This project is a collaboration between Arizona State University Project Cities, The Design School, and the City of Phoenix’s Water Services Department. The thesis is an exploration and analysis of feedback from Phoenix residents used to create an educational resource, which is intended to give Phoenix homeowners inspiration on how to successfully modify their front yard using xeriscape and rainwater harvesting methods intended to help them save water and keep their landscape drought resilient.
ContributorsLomeli, Sofia (Author) / Coseo, Paul (Thesis director) / Colter, Kaylee (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / The Design School (Contributor)
Created2024-05
Description

There are unfortunately very few curricular guides that focus on community engagement within the higher education of landscape architecture. A Beginner’s Guide to Community Engagement in the Curriculum of Landscape Architecture and Urban Planning to Improve Social Justice and Sustainability helps resolve this issue and serves as a resource to

There are unfortunately very few curricular guides that focus on community engagement within the higher education of landscape architecture. A Beginner’s Guide to Community Engagement in the Curriculum of Landscape Architecture and Urban Planning to Improve Social Justice and Sustainability helps resolve this issue and serves as a resource to students, educators, designers, and more. The guide centralizes a diverse collection of resources, guides students through learning materials, shares insight, and proposes potential community engagement methods. The booklet aims to help readers understand the importance of community engagement in design and shares different curricular approaches to introduce the work to students.

ContributorsNeeson, Margaret (Author) / Cheng, Chingwen (Thesis director) / Coseo, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / The Design School (Contributor)
Created2023-05
Description

En la zona metropolitana de Phoenix, el calor urbano está afectando la salud, la seguridad y la economía y se espera que estos impactos empeoren con el tiempo. Se prevé que el número de días por encima de 110˚F aumentará más del doble para el 2060. En mayo de 2017,

En la zona metropolitana de Phoenix, el calor urbano está afectando la salud, la seguridad y la economía y se espera que estos impactos empeoren con el tiempo. Se prevé que el número de días por encima de 110˚F aumentará más del doble para el 2060. En mayo de 2017, The Nature Conservancy, el Departamento de Salud Pública del condado de Maricopa, Central Arizona Conservation Alliance, la Red de Investigación en Sostenibilidad sobre la Resiliencia Urbana a Eventos Extremos, el Centro de Investigación del Clima Urbano de Arizona State University y el Center for Whole Communities lanzaron un proceso participativo de planificación de acciones contra el calor para identificar tanto estrategias de mitigación como de adaptación a fin de reducir directamente el calor y mejorar la capacidad de los residentes para lidiar con el calor. Las organizaciones comunitarias con relaciones existentes en tres vecindarios seleccionados para la planificación de acciones contra el calor se unieron más tarde al equipo del proyecto: Phoenix Revitalization Corporation, RAILMesa y Puente Movement. Más allá de construir un plan de acción comunitario contra el calor y completar proyectos de demostración, este proceso participativo fue diseñado para desarrollar conciencia, iniciativa y cohesión social en las comunidades subrepresentadas. Asimismo el proceso de planificación de acciones contra el calor fue diseñado para servir como modelo para esfuerzos futuros de resiliencia al calor y crear una visión local, contextual y culturalmente apropiada de un futuro más seguro y saludable. El método iterativo de planificación y participación utilizado por el equipo del proyecto fortaleció las relaciones dentro y entre los vecindarios, las organizaciones comunitarias, los responsables de la toma de decisiones y el equipo núcleo, y combinó la sabiduría de la narración de historias y la evidencia científica para comprender mejor los desafíos actuales y futuros que enfrentan los residentes durante eventos de calor extremo. Como resultado de tres talleres en cada comunidad, los residentes presentaron ideas que quieren ver implementadas para aumentar su comodidad y seguridad térmica durante los días de calor extremo.

Como se muestra a continuación, las ideas de los residentes se interceptaron en torno a conceptos similares, pero las soluciones específicas variaron entre los vecindarios. Por ejemplo, a todos los vecindarios les gustaría agregar sombra a sus corredores peatonales, pero variaron las preferencias para la ubicación de las mejoras para dar sombra. Algunos vecindarios priorizaron las rutas de transporte público, otros priorizaron las rutas utilizadas por los niños en su camino a la escuela y otros quieren paradas de descanso con sombra en lugares clave. Surgieron cuatro temas estratégicos generales en los tres vecindarios: promover y educar; mejorar la comodidad/capacidad de afrontamiento; mejorar la seguridad; fortalecer la capacidad. Estos temas señalan que existen serios desafíos de seguridad contra el calor en la vida diaria de los residentes y que la comunidad, los negocios y los sectores responsables de la toma de decisión deben abordar esos desafíos.

Los elementos del plan de acción contra el calor están diseñados para incorporarse a otros esfuerzos para aliviar el calor, crear ciudades resilientes al clima y brindar salud y seguridad pública. Los socios de implementación del plan de acción contra el calor provienen de la región de la zona metropolitana de Phoenix, y se brindan recomendaciones para apoyar la transformación a una ciudad más fresca.

Para ampliar la escala de este enfoque, los miembros del equipo del proyecto recomiendan a) compromiso continuo e inversiones en estos vecindarios para implementar el cambio señalado como vital por los residentes, b) repetir el proceso de planificación de acción contra el calor con líderes comunitarios en otros vecindarios, y c) trabajar con las ciudades, los planificadores urbanos y otras partes interesadas para institucionalizar este proceso, apoyando las políticas y el uso de las métricas propuestas para crear comunidades más frescas.

ContributorsMesserschmidt, Maggie (Contributor) / Guardaro, Melissa (Contributor) / White, Jessica R. (Contributor) / Berisha, Vjollca (Contributor) / Hondula, David M. (Contributor) / Feagan, Mathieu (Contributor) / Grimm, Nancy (Contributor) / Beule, Stacie (Contributor) / Perea, Masavi (Contributor) / Ramirez, Maricruz (Contributor) / Olivas, Eva (Contributor) / Bueno, Jessica (Contributor) / Crummey, David (Contributor) / Winkle, Ryan (Contributor) / Rothballer, Kristin (Contributor) / Mocine-McQueen, Julian (Contributor) / Maurer, Maria (Artist) / Coseo, Paul (Artist) / Crank, Peter J (Designer) / Broadbent, Ashley (Designer) / McCauley, Lisa (Designer) / Nature's Cooling Systems Project (Contributor) / Nature Conservancy (U.S.) (Contributor) / Phoenix Revitalization Corporation (Contributor) / Puente Movement (Contributor) / Maricopa County (Ariz.). Department of Public Health (Contributor) / Central Arizona Conservation Alliance (Contributor) / Arizona State University. Urban Climate Research Center (Contributor) / Arizona State University. Urban Resilience to Extremes Sustainability Research Network (Contributor) / Center for Whole Communities (Contributor) / RAILmesa (Contributor) / Vitalyst Health Foundation (Funder)
Created2022
193418-Thumbnail Image.png
Description
City governments have an opportunity to address historic environmental injustices through the management of their urban forests. When applying environmental justice to the management of urban trees, the common approach is to plant new trees in areas with high proportions of underserved residents and low tree canopy. This is the

City governments have an opportunity to address historic environmental injustices through the management of their urban forests. When applying environmental justice to the management of urban trees, the common approach is to plant new trees in areas with high proportions of underserved residents and low tree canopy. This is the approach taken by many programs, such as the MillionTrees programs in Los Angeles and New York City. However, these initiatives do not always result in just outcomes and, in some cases, exacerbate existing inequities. This suggests the need for a model of urban tree canopy (UTC) justice that encapsulates distributive, procedural, and recognition justice. In this thesis, I suggest such a model of UTC justice that incorporates ecosystem services and disservices to understand resident satisfaction with neighborhood trees. I then apply the model to the case of the Phoenix, Arizona metropolitan area by assessing local UTC plans for mentions of environmental justice. Finally, I use multiple regression analysis to identify the relationship between neighborhood tree canopy percentage and resident satisfaction with neighborhood trees. Results indicate that tree canopy is a statistically insignificant determinant of resident satisfaction in 23 of 30 models. This supports my model of UTC justice in that it suggests that there is a confounding variable between UTC provisioning and resident satisfaction. This thesis culminates in recommendations for city governments, including the use of longitudinal socioecological surveys to evaluate the need for and success of UTC plans for environmental justice.
ContributorsCrichlow, Timara (Author) / DesRoches, Tyler (Thesis advisor) / Coseo, Paul (Thesis advisor) / Melnick, Rob (Committee member) / Pataki, Diane (Committee member) / Arizona State University (Publisher)
Created2024
193550-Thumbnail Image.png
Description
This dissertation focuses on three studies related to sustainable urban wastewater systems and greywater policy. The research aims to address technical, regulatory, and social gaps in sustainable urban wastewater systems and greywater policy through research and innovation, adopting a holistic, systems perspective to realize the water security, environmental, and social

This dissertation focuses on three studies related to sustainable urban wastewater systems and greywater policy. The research aims to address technical, regulatory, and social gaps in sustainable urban wastewater systems and greywater policy through research and innovation, adopting a holistic, systems perspective to realize the water security, environmental, and social benefits of greywater reuse. The main research question is: How can greywater treatment technologies and greywater reuse policies contribute to sustainable urban water systems based on the SETs (Social-Ecological-Technological Systems) framework?The first study conducted a systematic literature review of urban wastewater, covering historical sources, treatment technologies, recycling, and reuse. It summarized the theoretical framework based on the review and developed a conceptual framework for greywater treatment technologies based on the SETs framework, which can support the development of sustainable cities. The second study focused on the public perception of greywater reuse in Phoenix, Arizona, USA. Using a mix of qualitative and quantitative research methods, the study found that city residents have a strong positive perception of and support for greywater reuse, suggesting that the barriers and challenges of public perception can be overcome. The third study examined greywater reuse policies in Arizona and California. It interviewed residents and policymakers and conducted a policy analysis to reveal the implementation benefits, management obstacles, technical restrictions, and challenges of greywater reuse policies in the two states. The study provides recommendations for redesigning greywater policies and improving greywater reuse policies. The dissertation concludes that greywater reuse policies should be informed by the new knowledge from the three studies to establish sustainable water use practices and design greywater reuse regulations and technologies that encourage safe and responsible greywater reuse in urban design. It emphasizes the need to increase economic data on greywater use and public investment to provide better economic costs and benefits, which can help shift interest towards more supportive greywater policy changes. The dissertation highlights that greywater policy is a key factor affecting the sustainability of urban water systems and that greywater treatment technologies and policies can contribute to sustainable urban water systems by addressing the social, ecological, and technological aspects of urban water challenges, supporting the vision of resilient, inclusive, livable, and sustainable water-smart cities.
ContributorsHu, Die (Author) / Cheng, Chingwen (Thesis advisor) / Coseo, Paul (Thesis advisor) / Boyer, Treavor (Committee member) / Arizona State University (Publisher)
Created2024
157548-Thumbnail Image.png
Description
Urban-induced heating is a challenge to the livability and health of city dwellers. It is a complex issue that many cities are facing, and a more urgent hazard in hot urban deserts (HUDs) than elsewhere due to already high temperatures and aridity. The challenge compounds in the absence of more

Urban-induced heating is a challenge to the livability and health of city dwellers. It is a complex issue that many cities are facing, and a more urgent hazard in hot urban deserts (HUDs) than elsewhere due to already high temperatures and aridity. The challenge compounds in the absence of more localized heat mitigation understanding. In addition, over-reliance on evidence from temperate regions is disconnected from the actualities of extreme bioclimatic dynamics found in HUDs. This dissertation is an integration of a series of studies that inform urban climate relationships specific to HUDs. This three-paper dissertation demonstrates heat mitigation aspirational goals from actualities, depicts local urban thermal drivers in Kuwait, and then tests morphological sensitivity of selected thermal modulation strategies in one neighborhood in Kuwait City.

The first paper is based on a systematic literature review where evidence from morphological mitigation strategies in HUDs were critically reviewed, synthesized and integrated. Metrics, measurements, and methods were extracted to examine the applicability of the different strategies, and a content synthesis identified the levels of strategy success. Collective challenges and uncertainties were interpreted to compare aspirational goals from actualities of morphological mitigation strategies.

The second paper unpacks the relationship of urban morphological attributes in influencing thermal conditions to assess latent magnitudes of heat amelioration strategies. Mindful of the challenges presented in the first study, a 92-day summer field-measurement campaign captured system dynamics of urban thermal stimuli within sub-diurnal phenomena. A composite data set of sub-hourly air temperature measurements with sub-meter morphological attributes was built, statistically analyzed, and modeled. Morphological mediation effects were found to vary hourly with different patterns under varying weather conditions in non-linear associations. Results suggest mitigation interventions be investigated and later tested on a site- use and time-use basis.

The third paper concludes with a simulation-based study to conform on the collective findings of the earlier studies. The microclimate model ENVI-met 4.4, combined with field measurements, was used to simulate the effect of rooftop shade-sails in cooling the near ground thermal environment. Results showed significant cooling effects and thus presented a novel shading approach that challenges orthodox mitigation strategies in HUDs.
ContributorsAlKhaled, Saud R A H (Author) / Coseo, Paul (Thesis advisor) / Brazel, Anthony (Thesis advisor) / Middel, Ariane (Committee member) / Cheng, Chingwen (Committee member) / Arizona State University (Publisher)
Created2019
154644-Thumbnail Image.png
Description
During summer 2014, a study was conducted as part of the Landscape Architecture Foundation Case Study Investigation to analyze features of three sustainably designed landscapes. Each project was located in a southwest desert city: Civic Space Park in Phoenix, AZ, the Pete V. Domenici US Courthouse Sustainable Landscape Retrofit in

During summer 2014, a study was conducted as part of the Landscape Architecture Foundation Case Study Investigation to analyze features of three sustainably designed landscapes. Each project was located in a southwest desert city: Civic Space Park in Phoenix, AZ, the Pete V. Domenici US Courthouse Sustainable Landscape Retrofit in Albuquerque, NM, and George "Doc" Cavalliere Park in Scottsdale, AZ. The principal components of each case study were performance benefits that quantified ongoing ecosystem services. Performance benefits were developed from data provided by the designers and collected by the research team. The functionality of environmental, social, and economic sustainable features was evaluated. In southwest desert cities achieving performance benefits such as microclimate cooling often come at the cost of water conservation. In each of these projects such tradeoffs were balanced by prioritizing the project goals and constraints.

During summer 2015, a study was conducted to characterize effects of tree species and shade structures on outdoor human thermal comfort under hot, arid conditions. Motivating the research was the hypothesis that tree species and shade structures will vary in their capacity to improve thermal comfort due to their respective abilities to attenuate solar radiation. Micrometeorological data was collected in full sun and under shade of six landscape tree species and park ramadas in Phoenix, AZ during pre-monsoon summer afternoons. The six landscape tree species included: Arizona ash (Fraxinus velutina Torr.), Mexican palo verde (Parkinsonia aculeata L.), Aleppo pine (Pinus halepensis Mill.), South American mesquite (Prosopis spp. L.), Texas live oak (Quercus virginiana for. fusiformis Mill.), and Chinese elm (Ulmus parvifolia Jacq.). Results showed that the tree species and ramadas were not similarly effective at improving thermal comfort, represented by physiologically equivalent temperature (PET). The difference between PET in full sun and under shade was greater under Fraxinus and Quercus than under Parkinsonia, Prosopis, and ramadas by 2.9-4.3 °C. Radiation was a significant driver of PET (p<0.0001, R2=0.69) and with the exception of ramadas, lower radiation corresponded with lower PET. Variations observed in this study suggest selecting trees or structures that attenuate the most solar radiation is a potential strategy for optimizing PET.
ContributorsColter, Kaylee (Author) / Martin, Chris (Thesis advisor) / Coseo, Paul (Committee member) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2016
158350-Thumbnail Image.png
Description
The rapid rate of urbanization coupled with continued population growth and anthropogenic activities has resulted in a myriad of urban climate related impacts across different cities around the world. Hot-arid cities are more vulnerable to induced urban heat effects due to the intense solar radiation during most of the year,

The rapid rate of urbanization coupled with continued population growth and anthropogenic activities has resulted in a myriad of urban climate related impacts across different cities around the world. Hot-arid cities are more vulnerable to induced urban heat effects due to the intense solar radiation during most of the year, leading to increased ambient air temperature and outdoor/indoor discomfort in Phoenix, Arizona. With the fast growth of the capital city of Arizona, the automobile-dependent planning of the city contributed negatively to the outdoor thermal comfort and to the people's daily social lives. One of the biggest challenges for hot-arid cities is to mitigate against the induced urban heat increase and improve the outdoor thermal. The objective of this study is to propose a pragmatic and useful framework that would improve the outdoor thermal comfort, by being able to evaluate and select minimally invasive urban heat mitigation strategies that could be applied to the existing urban settings in the hot-arid area of Phoenix. The study started with an evaluation of existing microclimate conditions by means of multiple field observations cross a North-South oriented urban block of buildings within Arizona State University’s Downtown campus in Phoenix. The collected data was evaluated and analyzed for a better understanding of the different local climates within the study area, then used to evaluate and partially validate a computational fluid dynamics model, ENVI-Met. Furthermore, three mitigation strategies were analyzed to the Urban Canopy Layer (UCL) level, an increase in the fraction of permeable materials in the ground surface, adding different configurations of high/low Leaf Area Density (LAD) trees, and replacing the trees configurations with fabric shading. All the strategies were compared and analyzed to determine the most impactful and effective mitigation strategies. The evaluated strategies have shown a substantial cooling effect from the High LAD trees scenarios. Also, the fabric shading strategies have shown a higher cooling effect than the Low LAD trees. Integrating the trees scenarios with the fabric shading had close cooling effect results in the High LAD trees scenarios. Finally, how to integrate these successful strategies into practical situations was addressed.
ContributorsAldakheelallah, Abdullah (Author) / Reddy, T Agami (Thesis advisor) / Middel, Ariane (Committee member) / Coseo, Paul (Committee member) / Arizona State University (Publisher)
Created2020