Matching Items (43)
Description

Global climate models predict increases in precipitation events in the Phoenix-metropolitan area and with the proposition of more flooding new insights are needed for protecting roadways and the services they provide. Students from engineering, sustainability, and planning worked together in ASU’s Urban Infrastructure Anatomy Spring 2016 course to assess:
   

Global climate models predict increases in precipitation events in the Phoenix-metropolitan area and with the proposition of more flooding new insights are needed for protecting roadways and the services they provide. Students from engineering, sustainability, and planning worked together in ASU’s Urban Infrastructure Anatomy Spring 2016 course to assess:
       1. How historical floods changed roadway designs.
       2. Precipitation forecasts to mid-century.
       3. The vulnerability of roadways to more frequent precipitation.
       4. Adaptation strategies focusing on safe-to-fail thinking.
       5. Strategies for overcoming institutional barriers to enable transitions.
The students designed an EPA Storm Water Management Model for the City of Phoenix and forced it with future precipitation forecasts. Vulnerability indexes were created for infrastructure performance and social outcomes. A multi-criteria decision analysis framework was created to prioritize infrastructure adaptation strategies.

Description

There is increasing evidence that vehicle travel in developed countries may have peaked, contradicting many historical travel demand forecasts. The underlying causes of this peaking are still under debate and there has been a mobilization of research, largely focused at national scales, to study the explanatory drivers. There is, however,

There is increasing evidence that vehicle travel in developed countries may have peaked, contradicting many historical travel demand forecasts. The underlying causes of this peaking are still under debate and there has been a mobilization of research, largely focused at national scales, to study the explanatory drivers. There is, however, a dearth of research focused at the metropolitan scale where transportation policy and planning are frequently decided.

Using Los Angeles County, California, as a case study, we investigate the Peak Car theory and whether social, economic, and technical factors, including roadways that have become saturated at times, may be contributing to changes in travel behavior. After peaking in 2002, vehicle travel in Los Angeles County declined by 3.4 billion (or 4.1%) by 2010. The effects of changing fuel prices, fuel economy, population growth, increased utilization of alternate transportation modes, changes in driver demographics, income, and freight are first assessed. It is possible, and likely, that these factors alone explain the reduction in travel. However, the growth in congestion raises questions of how a constricting supply of roadway network capacity may contribute to travel behavior changes.

There have been no studies that have directly assessed how the maturing supply of infrastructure coupled with increasing demand affect travel behavior. We explore regional and urban factors in Los Angeles to provide insight into the drivers of Peak Car at city scales where the majority of travel occurs. The results show that a majority of the decline in VMT in Los Angeles can be attributed the rising fuel prices during the 2000s. While overall roadway network capacity is not yet a limiting factor for vehicle travel there is some evidence that suggests that congestion along certain corridors may be shifting some automobile travel to alternatives. The results also suggest that the relative impact of any factor on travel demand is likely to vary from one locale to another and Peak Car analysis across large geographic areas obscures the nuisances of travel behavior at a local scale.

Description

The Food-Energy-Water (FEW) nexus is the interaction and the interdependence of the food, energy and water systems. These interdependencies exist in all parts of the world yet little knowledge exists of the complexity within these interdependent systems. Using Arizona as a case study, systems-oriented frameworks are examined for their value

The Food-Energy-Water (FEW) nexus is the interaction and the interdependence of the food, energy and water systems. These interdependencies exist in all parts of the world yet little knowledge exists of the complexity within these interdependent systems. Using Arizona as a case study, systems-oriented frameworks are examined for their value in revealing the complexity of FEW nexus. Industrial Symbiosis, Life Cycle Assessment (LCA) and Urban Metabolism are examined. The Industrial Symbiosis presents the system as purely a technical one and looks only at technology and hard infrastructure.

The LCA framework takes a reductionist approach and tries to make the system manageable by setting boundary conditions. This allows the frameworks to analyze the soft infrastructure as well as the hard infrastructure. The LCA framework also helps determine potential impact. Urban Metabolism analyzes the interactions between the different infrastructures within the confines of the region and retains the complexity of the system. It is concluded that a combination of the frameworks may provide the most insight in revealing the complexity of nexus and guiding decision makers towards improving sustainability and resilience.