Matching Items (5)
Description

This report is the consolidated work of an interdisciplinary course project in CEE494/598, CON598, and SOS598, Urban Infrastructure Anatomy and Sustainable Development. In Fall 2012, the course at Arizona State University used sustainability research frameworks and life-cycle assessment methods to evaluate the comprehensive benefits and costs when transit-oriented development is

This report is the consolidated work of an interdisciplinary course project in CEE494/598, CON598, and SOS598, Urban Infrastructure Anatomy and Sustainable Development. In Fall 2012, the course at Arizona State University used sustainability research frameworks and life-cycle assessment methods to evaluate the comprehensive benefits and costs when transit-oriented development is infilled along the proposed light rail transit line expansion. In each case, and in every variation of possible future scenarios, there were distinct life-cycle benefits from both developing in more dense urban structures and reducing automobile travel in the process.

Results from the report are superseded by our publication in Environmental Science and Technology.

Created2012-12
Description

Hemcrete is an alternative, environmentally‐friendly building material gaining adherents in Great Britain and other European countries. It is an attractive choice as a building material because it is made from a renewable resource, hemp, a hardy plant that is a close, but non‐hallucinogenic relative of marijuana. This plant is relatively easy to cultivate,

Hemcrete is an alternative, environmentally‐friendly building material gaining adherents in Great Britain and other European countries. It is an attractive choice as a building material because it is made from a renewable resource, hemp, a hardy plant that is a close, but non‐hallucinogenic relative of marijuana. This plant is relatively easy to cultivate, requires little in the way of pesticides or fertilizers, and almost all parts can be used for various products from paper to textiles to food.

Hemcrete is made from a mixture of lime, water, and the fibrous outer portion of the hemp plant called the “hurd” or “shive”. When mixed, it is worked and placed much like conventional concrete ‐ hence the name. However, that is where the similarities with concrete end. Hemcrete is not comparable to concrete on a strength basis, and is better described as an alternative insulation product. When built into walls of sufficient thickness, Hemcrete offers high thermal efficiency, and has strong claims to being carbon negative. The purpose of this study
was to evaluate this claim of carbon negativity, and to compare these environmentally friendly qualities against conventional fiberglass batt insulation.

Our model was constructed using two identically sized “walls” measuring eight feet square by one foot in depth, one insulated using Hemcrete, and the other using fiberglass. Our study focused on three areas: water usage, cost, and carbon dioxide emissions. We chose water
usage because we wanted to determine the feasibility of using Hemcrete in the Phoenix metropolitan region where water is a troubled resource. Secondly, we wished to evaluate the claim on carbon negativity, so CO2 equivalents throughout the production process were measured. Finally, we wished to know whether Hemcrete could compete on a cost basis with more conventional insulation methods, so we also built in a price comparison.

Since the cultivation of hemp is currently unlawful in the United States, this study can help determine whether these restrictions should be relaxed in order to allow the construction of buildings insulated with Hemcrete.

Created2013-05
158483-Thumbnail Image.png
Description
A mathematical approach was developed to evaluate the resilience of coupled power-water networks using a variant of contingency analysis adapted from electric transmission studies. In particular, the “what if” scenarios explored in power systems research were extended and applied for coupled power-water network research by evaluating how stressors and failures

A mathematical approach was developed to evaluate the resilience of coupled power-water networks using a variant of contingency analysis adapted from electric transmission studies. In particular, the “what if” scenarios explored in power systems research were extended and applied for coupled power-water network research by evaluating how stressors and failures in the water network can propagate across system boundaries and into the electric network. Reduction in power system contingency reserves was the metric for determining violation of N-1 contingency reliability. Geospatial considerations were included using high-resolution, publicly available Geographic Information System data on infrastructure in the Phoenix Metropolitan Area that was used to generate a power network with 599 transmission lines and total generation capacity of 18.98 GW and a water network with 2,624 water network lines and capacity to serve up to 1.72M GPM of surface water. The steady-state model incorporated operating requirements for the power network—e.g., contingency reserves—and the water network—e.g., pressure ranges—while seeking to meet electric load and water demand. Interconnections developed between the infrastructures demonstrated how alternations to the system state and/or configuration of one network affect the other network, with results demonstrated through co-simulation of the power network and water network using OpenDSS and EPANET, respectively. Results indicate four key findings that help operators understand the interdependent behavior of the coupled power-water network: (i) two water failure scenarios (water flowing out of Waddell dam and CAP canal flowing west of Waddell dam) are critical to power-water network N-1 contingency reliability above 60% power system loading and at 100% water system demand, (ii) fast-starting natural gas generating units are necessary to maintain N-1 contingency reliability below 60% power system loading, (iii) Coolidge Station was the power plant to most frequently undergo a reduction in reserves amongst the water failure scenarios that cause a violation of N-1 reliability, (iv) power network vulnerability to water network failures was non-linear because it depends on the generating units that are dispatched, which can vary as line thermal limits or unit generation capacities are reached.
ContributorsGorman, Brandon (Author) / Johnson, Nathan G (Thesis advisor) / Seager, Thomas P (Committee member) / Chester, Mikhail V (Committee member) / Arizona State University (Publisher)
Created2020
Description

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate students from Engineering, Sustainability, and Urban Planning in ASU’s Urban Infrastructure Anatomy and Sustainable Development course evaluated the water, energy, and infrastructure changes that result from smart growth in Phoenix, Arizona. The Maricopa Association of Government's Sustainable Transportation and Land Use Integration Study identified a market for 485,000 residential dwelling units in the urban core. Household water and energy use changes, changes in infrastructure needs, and financial and economic savings are assessed along with associated energy use and greenhouse gas emissions.

The course project has produced data on sustainable development in Phoenix and the findings will be made available through ASU’s Urban Sustainability Lab.

ContributorsNahlik, Matthew (Author) / Chester, Mikhail Vin (Author) / Andrade, Luis (Author) / Archer, Melissa (Author) / Barnes, Elizabeth (Author) / Beguelin, Maria (Author) / Bonilla, Luis (Author) / Bubenheim, Stephanie (Author) / Burillo, Daniel (Author) / Cano, Alex (Author) / Guiley, Keith (Author) / Hamad, Moayyad (Author) / Heck, John (Author) / Helble, Parker (Author) / Hsu, Will (Author) / Jensen, Tate (Author) / Kannappan, Babu (Author) / Kirtley, Kelley (Author) / LaGrou, Nick (Author) / Loeber, Jessica (Author) / Mann, Chelsea (Author) / Monk, Shawn (Author) / Paniagua, Jaime (Author) / Prasad, Saransh (Author) / Stafford, Nicholas (Author) / Unger, Scott (Author) / Volo, Tom (Author) / Watson, Mathew (Author) / Woodruff, Abbie (Author) / Arizona State University. School of Sustainable Engineering and the Built Environment (Contributor) / Arizona State University. Center for Earth Systems Engineering and Management (Contributor)
Description

Global climate models predict increases in precipitation events in the Phoenix-metropolitan area and with the proposition of more flooding new insights are needed for protecting roadways and the services they provide. Students from engineering, sustainability, and planning worked together in ASU’s Urban Infrastructure Anatomy Spring 2016 course to assess:
   

Global climate models predict increases in precipitation events in the Phoenix-metropolitan area and with the proposition of more flooding new insights are needed for protecting roadways and the services they provide. Students from engineering, sustainability, and planning worked together in ASU’s Urban Infrastructure Anatomy Spring 2016 course to assess:
       1. How historical floods changed roadway designs.
       2. Precipitation forecasts to mid-century.
       3. The vulnerability of roadways to more frequent precipitation.
       4. Adaptation strategies focusing on safe-to-fail thinking.
       5. Strategies for overcoming institutional barriers to enable transitions.
The students designed an EPA Storm Water Management Model for the City of Phoenix and forced it with future precipitation forecasts. Vulnerability indexes were created for infrastructure performance and social outcomes. A multi-criteria decision analysis framework was created to prioritize infrastructure adaptation strategies.