Matching Items (862)
Filtering by

Clear all filters

128201-Thumbnail Image.png
Description

Manual therapy has long been a component of physical rehabilitation programs, especially to treat those in pain. The mechanisms of manual therapy, however, are not fully understood, and it has been suggested that its pain modulatory effects are of neurophysiological origin and may be mediated by the descending modulatory circuit.

Manual therapy has long been a component of physical rehabilitation programs, especially to treat those in pain. The mechanisms of manual therapy, however, are not fully understood, and it has been suggested that its pain modulatory effects are of neurophysiological origin and may be mediated by the descending modulatory circuit. Therefore, the purpose of this review is to examine the neurophysiological response to different types of manual therapy, in order to better understand the neurophysiological mechanisms behind each therapy’s analgesic effects. It is concluded that different forms of manual therapy elicit analgesic effects via different mechanisms, and nearly all therapies appear to be at least partially mediated by descending modulation. Additionally, future avenues of mechanistic research pertaining to manual therapy are discussed.

ContributorsVigotsky, Andrew (Author) / Bruhns, Ryan P. (Author) / College of Health Solutions (Contributor)
Created2015-11-29
128193-Thumbnail Image.png
Description

Software Defined Network (SDN) architecture has been widely used in various application domains. Aiming at the authentication and security issues of SDN architecture in autonomous decentralized system (ADS) applications, securing the mutual trust among the autonomous controllers, we combine trusted technology and SDN architecture, and we introduce an authentication protocol

Software Defined Network (SDN) architecture has been widely used in various application domains. Aiming at the authentication and security issues of SDN architecture in autonomous decentralized system (ADS) applications, securing the mutual trust among the autonomous controllers, we combine trusted technology and SDN architecture, and we introduce an authentication protocol based on SDN architecture without any trusted third party between trusted domains in autonomous systems. By applying BAN predicate logic and AVISPA security analysis tool of network interaction protocol, we can guarantee protocol security and provide complete safety tests. Our work fills the gap of mutual trust between different trusted domains and provides security foundation for interaction between different trusted domains.

ContributorsZhou, Ruikang (Author) / Lai, Yingxu (Author) / Liu, Zenghui (Author) / Chen, Yinong (Author) / Yao, Xiangzhen (Author) / Gong, Jiezhong (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-12-30
128182-Thumbnail Image.png
Description

Stimuli-responsive polymers or so-called “smart polymers” are macromolecules that are sensitive to certain triggers from the external environment, including temperature, light, electrical or magnetic fields, and chemicals. The activated polymers produce observable or detectable micro- or nanoscale changes, such as morphology, molecular bond rearrangement/cleavage, and molecular motion, which can induce

Stimuli-responsive polymers or so-called “smart polymers” are macromolecules that are sensitive to certain triggers from the external environment, including temperature, light, electrical or magnetic fields, and chemicals. The activated polymers produce observable or detectable micro- or nanoscale changes, such as morphology, molecular bond rearrangement/cleavage, and molecular motion, which can induce changes in their macroscopic properties such as color, shape, and functionality. Due to the versatile selection of backbone and functional groups, stimuli-responsive polymers can be tailored to have a variety of specific mechanical, chemical, electrical, optical, biological, or other properties and can be engineered into different forms, including bulk, thin film, micro/nanoparticles, and composites. Over the years, many multidisciplinary efforts have been conducted and reported optimizing the functionality of stimuli-responsive polymers and exploring new and innovative applications. However, as shown below, original and exciting research in emerging sectors continues to drive the evolution of and interest in this class of polymer.

ContributorsWang, Dong (Author) / Green, Matthew (Author) / Chen, Kai (Author) / Daengngam, Chalongrat (Author) / Kotsuchibashi, Yohei (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-07-05
128181-Thumbnail Image.png
Description

Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic

Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design.

ContributorsYu, Shimeng (Author) / Gao, Bin (Author) / Fang, Zheng (Author) / Yu, Hongyu (Author) / Kang, Jinfeng (Author) / Wong, H.-S. Philip (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-10-31
128179-Thumbnail Image.png
Description

There is an urgent need for the development of alternative strategies for effective drug delivery to improve the outcome of patients suffering from deadly diseases such as cancer. Nanoparticles, in particular layered double hydroxide (LDH) nanoparticles, have great potential as nanocarriers of chemotherapeutic molecules. In this study, we synthesized (Zn,

There is an urgent need for the development of alternative strategies for effective drug delivery to improve the outcome of patients suffering from deadly diseases such as cancer. Nanoparticles, in particular layered double hydroxide (LDH) nanoparticles, have great potential as nanocarriers of chemotherapeutic molecules. In this study, we synthesized (Zn, Al)-LDH nanoparticles and report their enhanced pH-dependent stability in comparison to the commonly used (Mg, Al)-LDH nanoparticles. Fluorescein isothiocyanate (FITC) and valproate (VP) were intercalated into (Zn, Al)-LDH nanoparticles to study cellular uptake, biocompatibility, and drug delivery capabilities using cultured pancreatic adenocarcinoma BxPC3 cells. Fluorescence measurements indicated that FITC-intercalated LDH nanoparticles showed a greater degree of energy-dependent uptake rather than passive uptake by BxPC3 cells, especially at high concentrations of nanoparticles. Tetrazolium-based colorimetric assays indicated that BxPC3 cells treated with VP-intercalated LDH nanoparticles showed a significant reduction in cell viability along with about 30-fold reduction in IC[subscript 50] compared to the drug alone. In contrast, the non-drug-intercalated LDH nanoparticles did not affect the cell viability indicating very low innate cytotoxicity. Our research indicates that the superior properties of (Zn, Al)-LDH nanoparticles make them ideal candidates for further development as in vivo chemotherapy drug delivery agents.

ContributorsNagaraj, Vinay J. (Author) / Sun, Xiaodi (Author) / Mehta, Jiten (Author) / Martin, Mac (Author) / Ngo, Thi (Author) / Dey, Sandwip (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-27
128178-Thumbnail Image.png
Description

With the ability to perform a multitude of unique and complex chemical transformations, microorganisms have long been the “workhorses” of many industrial processes. However, in addition to exploiting the utility of naturally evolved phenotypes, the principles, strategies, and tools of synthetic biology are now being applied to facilitate the engineering

With the ability to perform a multitude of unique and complex chemical transformations, microorganisms have long been the “workhorses” of many industrial processes. However, in addition to exploiting the utility of naturally evolved phenotypes, the principles, strategies, and tools of synthetic biology are now being applied to facilitate the engineering of tailor-made microbes capable of tackling some of society's most important and toughest challenges. Fueled in part by exponentially increasing reservoirs of bioinformatic data and coupled with more robust and powerful tools for its processing, research in the past decade has brought about new and broadened perspectives of fundamental biological phenomena. The application of said insight is now beginning to unlock the unprecedented potential of synthetic biology in biotechnology, as well as its considerable promise for addressing previously unsolved global challenges. For example, within the realm of industrial microbiology, progress in the field of synthetic biology has enabled the development of new biosynthetic pathways for the production of renewable fuels and chemicals, programmable logic controls to regulate and optimize complex cellular functions, and robust microbes for the destruction of harmful environmental contaminants. In this Research Topic, a collection of articles—including original research, reviews, and mini-reviews—from leading investigators in the synthetic biology community are presented to capture the current state, recent progress, and over-arching challenges associated with integrating synthetic biology with industrial microbiology and biotechnology.

ContributorsZhang, Weiwen (Author) / Nielsen, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-08-26
128175-Thumbnail Image.png
Description

Understanding the extent to which vascular disease and its risk factors are associated with prodromal dementia, notably Alzheimer's disease (AD), may enhance predictive accuracy as well as guide early interventions. One promising avenue to determine this relationship consists of looking for reliable and sensitive in-vivo imaging methods capable of characterizing

Understanding the extent to which vascular disease and its risk factors are associated with prodromal dementia, notably Alzheimer's disease (AD), may enhance predictive accuracy as well as guide early interventions. One promising avenue to determine this relationship consists of looking for reliable and sensitive in-vivo imaging methods capable of characterizing the subtle brain alterations before the clinical manifestations. However, little is known from the imaging perspective about how risk factors such as vascular disease influence AD progression. Here, for the first time, we apply an innovative T1 and DTI fusion analysis of 3D corpus callosum (CC) on mild cognitive impairment (MCI) populations with different levels of vascular profile, aiming to de-couple the vascular factor in the prodromal AD stage. Our new fusion method successfully increases the detection power for differentiating MCI subjects with high from low vascular risk profiles, as well as from healthy controls. MCI subjects with high and low vascular risk profiles showed differed alteration patterns in the anterior CC, which may help to elucidate the inter-wired relationship between MCI and vascular risk factors.

ContributorsLao, Yi (Author) / Nguyen, Binh (Author) / Tsao, Sinchai (Author) / Gajawelli, Niharika (Author) / Law, Meng (Author) / Chui, Helena (Author) / Weiner, Michael (Author) / Wang, Yalin (Author) / Lepore, Natasha (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-12-28
Description
Within the realm of parenting, there is research about a distinct stage entitled emerging adulthood that encompasses biopsychosocial development between the ages of 18 and 25. The research study seeks to answer the questions: how do current parenting practices influence emerging adult mental health, and what adjustments must be made

Within the realm of parenting, there is research about a distinct stage entitled emerging adulthood that encompasses biopsychosocial development between the ages of 18 and 25. The research study seeks to answer the questions: how do current parenting practices influence emerging adult mental health, and what adjustments must be made to improve upon these relationships? Past studies have demonstrated that there is a relationship between the developmental period of emerging adulthood, which is characterized by identity formation itself, and the mental health of both emerging adults and their parents. However, upon reviewing the literature on emerging adulthood, it was revealed that there is a gap in regard to how to parent adult children and foster a positive relationship. While the goal is to explore this gap, the research team is additionally seeking to utilize new information to create a parenting course that promotes positive adjustments to the current relationship between emerging adults and their parents. To explore this, the research team conducted emerging adult surveys, asking participants to analyze their current connection with their parents' practices and the effects they have on their mental health. Additionally, surveys and interviews were done with Licensed Clinical Social Workers (LCSWs) to bolster the evidence-based methods that this population uses to support emerging adults.
ContributorsGolden, Ariella (Author) / Brobak, Rachel (Co-author) / Jensen, Kimberly (Thesis director) / Evans, Amanda (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / College of Health Solutions (Contributor)
Created2024-05
Description
This paper examines the multifaceted challenges surrounding college students' nutrition, with a specific focus on Arizona State University (ASU). Examining economic shifts, psychological influences, nutrition knowledge, and body image dynamics, it reveals the profound impact on students' food security and eating behaviors. Despite existing initiatives, persistent gaps in resources remain,

This paper examines the multifaceted challenges surrounding college students' nutrition, with a specific focus on Arizona State University (ASU). Examining economic shifts, psychological influences, nutrition knowledge, and body image dynamics, it reveals the profound impact on students' food security and eating behaviors. Despite existing initiatives, persistent gaps in resources remain, necessitating comprehensive interventions to support students effectively. In response, "The Ultimate Health Resource for ASU Students," a website, was developed as an innovative solution. This platform aims to empower students by providing a centralized hub to access vital resources, connect with peers, and discover nutritious recipes. Proposed strategies encompass expanding food pantry offerings, developing mobile applications for nutritional guidance, and fostering partnerships with local organizations. By tackling these challenges head-on and fostering a culture of support, ASU can ensure that all students have equitable access to nutritious food options and the necessary resources to thrive academically and personally. The website serves as a place of empowerment, offering practical solutions and fostering a sense of community among ASU students striving for optimal health and well-being.
ContributorsLujan, Lexy (Author) / Buffington, Dillynn (Co-author) / O’Flaherty, Katherine (Thesis director) / Brand, Ashley (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Molecular Sciences (Contributor) / College of Health Solutions (Contributor)
Created2024-05
130436-Thumbnail Image.png
Description
Background: National and international strategies to increase physical activity emphasize environmental and policy changes that can have widespread and long-lasting impact. Evidence from multiple countries using comparable methods is required to strengthen the evidence base for such initiatives. Because some environment and policy changes could have generalizable effects and others

Background: National and international strategies to increase physical activity emphasize environmental and policy changes that can have widespread and long-lasting impact. Evidence from multiple countries using comparable methods is required to strengthen the evidence base for such initiatives. Because some environment and policy changes could have generalizable effects and others may depend on each country's context, only international studies using comparable methods can identify the relevant differences. Methods: Currently 12 countries are participating in the International Physical Activity and the Environment Network (IPEN) study. The IPEN Adult study design involves recruiting adult participants from neighborhoods with wide variations in environmental walkability attributes and socioeconomic status (SES). Results: Eleven of twelve countries are providing accelerometer data and 11 are providing GIS data. Current projections indicate that 14,119 participants will provide survey data on built environments and physical activity and 7145 are likely to provide objective data on both the independent and dependent variables. Though studies are highly comparable, some adaptations are required based on the local context. Conclusions: This study was designed to inform evidence-based international and country-specific physical activity policies and interventions to help prevent obesity and other chronic diseases that are high in developed countries and growing rapidly in developing countries.
ContributorsKerr, Jacqueline (Author) / Sallis, James F. (Author) / Owen, Neville (Author) / De Bourdeaudhuij, Ilse (Author) / Cerin, Ester (Author) / Sugiyama, Takemi (Author) / Reis, Rodrigo (Author) / Sarmiento, Olga (Author) / Froemel, Karel (Author) / Mitas, Josef (Author) / Troelsen, Jens (Author) / Christiansen, Lars Breum (Author) / Macfarlane, Duncan (Author) / Salvo, Deborah (Author) / Schofield, Grant (Author) / Badland, Hannah (Author) / Guillen-Grima, Francisco (Author) / Aguinaga-Ontoso, Ines (Author) / Davey, Rachel (Author) / Bauman, Adrian (Author) / Saelens, Brian (Author) / Riddoch, Chris (Author) / Ainsworth, Barbara (Author) / Pratt, Michael (Author) / Schmidt, Tom (Author) / Frank, Lawrence (Author) / Adams, Marc (Author) / Conway, Terry (Author) / Cain, Kelli (Author) / Van Dyck, Delfien (Author) / Bracy, Nicole (Author) / College of Health Solutions (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2013