Matching Items (109)
Filtering by

Clear all filters

149322-Thumbnail Image.png
Description
The U.S. Army Medical Command has been testing a leadership based structure to increase the performance of delivering construction and facility services in its system of $600M of construction and 26 major hospital facilities in the U.S. The organizational requirement was to minimize the management and oversight of contractors

The U.S. Army Medical Command has been testing a leadership based structure to increase the performance of delivering construction and facility services in its system of $600M of construction and 26 major hospital facilities in the U.S. The organizational requirement was to minimize the management and oversight of contractors and simultaneously increase project performance. The research proposes that a leadership based structure can supplement the perception, preplanning, and risk minimization capability of a contractor's project manager, thus increasing the project performance (on time, within budget, and meeting expectations) and decreasing client management requirement. The projects were delivered in a best value and low price environment. The major impact of this research was that proactive management by contractors was more effective than traditional management such as direction, control, and inspection by client's professional representatives. The results based on data collection and date analyses validated that a leadership based structure can increase the performance of an organization and reduce its management requirement.
ContributorsMalhotra, Neha (Author) / Kashiwagi, Dean T. (Thesis advisor) / Sullivan, Kenneth (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2010
149458-Thumbnail Image.png
Description
With increasing interest in sustainability and green building, organizations are implementing programs such as Leadership in Energy and Environmental Design for Existing Buildings: Operations and Maintenance (LEED-EB) in order to focus corporate sustainability goals on the operations of a facility and the practices of the building occupants. Green building programs

With increasing interest in sustainability and green building, organizations are implementing programs such as Leadership in Energy and Environmental Design for Existing Buildings: Operations and Maintenance (LEED-EB) in order to focus corporate sustainability goals on the operations of a facility and the practices of the building occupants. Green building programs help reduce the impact of a facility and bring about several environmental benefits including but not limited to energy conservation, water conservation and material conservation. In addition to various environmental benefits, green building programs can help companies become more efficient. The problem is that organizations are not always successful in their pursuits to achieve sustainability goals. It frequently take years to implement a program, and in many cases the goals for sustainability never come to fruition, when in the mean time resources are wasted, money is spent needlessly and opportunities are lost forever. This thesis addresses how the Six Sigma methodologies used by so many to implement change in their organizations could be applied to the LEED-EB program to help companies achieve sustainability results. A qualitative analysis of the Six Sigma methodologies was performed to determine if and how a LEED-EB program might utilize such methods. The two programs were found to be compatible and several areas for improvements to implementing a LEED-EB program were identified.
ContributorsFurphy, Kimberly (Author) / Hild, Nicholas (Thesis advisor) / Olson, Larry (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2010
131560-Thumbnail Image.png
Description
Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate

Spaceflight and spaceflight analogue culture enhance the virulence and pathogenesis-related stress resistance of the foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). This is an alarming finding as it suggests that astronauts may have an increased risk of infection during spaceflight. This risk is further exacerbated as multiple studies indicate that spaceflight negatively impacts aspects of the immune system. In order to ensure astronaut safety during long term missions, it is important to study the phenotypic effects of the microgravity environment on a range of medically important microbial pathogens that might be encountered by the crew. This ground-based study uses the NASA-engineered Rotating Wall Vessel (RWV) bioreactor as a spaceflight analogue culture system to grow bacteria under low fluid shear forces relative to those encountered in microgravity, and interestingly, in the intestinal tract during infection. The culture environment in the RWV is commonly referred to as low shear modeled microgravity (LSMMG). In this study, we characterized the stationary phase stress response of the enteric pathogen, Salmonella enterica serovar Enteritidis (S. Enteritidis), to LSMMG culture. We showed that LSMMG enhanced the resistance of stationary phase cultures of S. Enteritidis to acid and thermal stressors, which differed from the LSSMG stationary phase response of the closely related pathovar, S. Typhimurium. Interestingly, LSMMG increased the ability of both S. Enteritidis and S. Typhimurium to adhere to, invade into, and survive within an in vitro 3-D intestinal co-culture model containing immune cells. Our results indicate that LSMMG regulates pathogenesis-related characteristics of S. Enteritidis in ways that may present an increased health risk to astronauts during spaceflight missions.
ContributorsKoroli, Sara (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, C. Mark (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133865-Thumbnail Image.png
Description
As construction and building methods advance so should their focus on reconstruction post-natural disasters. For the past 50 years there has been an average of 6.2 hurricanes making landfall, and several recent unfortunate occurrences in the past year that have caused immeasurable damage and taken priceless lives (Chris Landsea 2017).

As construction and building methods advance so should their focus on reconstruction post-natural disasters. For the past 50 years there has been an average of 6.2 hurricanes making landfall, and several recent unfortunate occurrences in the past year that have caused immeasurable damage and taken priceless lives (Chris Landsea 2017). Damages could have been significantly reduced to residential homes and lives saved if proper, hurricane-resistant construction was used. It is important to continue advancement in efficient planning and reconstructive methods to restore individuals into their homes and ensure their safety in the future. Utilizing tested resilient building methods may increase construction costs but has a visible payoff through mitigation of economic losses in the future. This can also help develop response and mitigation plans based on the very specific conditions of each community or affected location. To do so, it is crucial to continue research and test various methods of construction and materials in residential homes. This study was a comparative analysis of the current roof systems implemented in residential homes, the role of hurricane testing facilities in maintaining building codes, and how damage incurred by hurricanes can be significantly reduced through a shift in the approach of homeowner insurance incentive. The purpose of this study was to provide a feasible and practicable solution for increasing implementation of hurricane resistant construction into homes. The results of this analysis concluded that there is a low percentage of homeowners investing in making their homes hurricane resilient. By re-inventing the incentive methods that insurance companies offer, this problem can step into the right direction in making more homes hurricane resilient consequently reducing damages, deaths, and economic loss.
ContributorsVarkalaite, Migle (Author) / Sullivan, Kenneth (Thesis director) / Ayer, Steven (Committee member) / School of International Letters and Cultures (Contributor) / Del E. Webb Construction (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133540-Thumbnail Image.png
Description
Services procured by government agencies are often ridden with delay and costly change orders. Government agencies may react to these failures by implementing restrictive terms and conditions intended to ensure that the service is delivered on time and within budget. While potentially helpful (and nearly always counterproductive), this approach often

Services procured by government agencies are often ridden with delay and costly change orders. Government agencies may react to these failures by implementing restrictive terms and conditions intended to ensure that the service is delivered on time and within budget. While potentially helpful (and nearly always counterproductive), this approach often fails to recognize the cause of the procurement failure \u2014 inadequate request for proposal (RFP) draftsmanship. The RFP must provide the vendor, or service provider, with a comprehensive understanding of the client's motivations for soliciting the bid, the environment in which the materials and services will be utilized, and accurate specifications for those materials and services. In summary, the RFP must be a clean and concise roadmap of client expectations. This thesis describes, for the novice RFP drafter, a value-based approach to preparing a request for proposal.
ContributorsWheeler, Brynn Marie (Author) / Sullivan, Kenneth (Thesis director) / Savicky, John (Committee member) / Hurtado, Kristen (Committee member) / Department of Supply Chain Management (Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134875-Thumbnail Image.png
Description
Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State

Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State University Palo Verde Main engineering dormitory construction site in December of 2016. The objective of this analysis on craft labor productivity in construction projects was to gather data regarding the efficiency of craft labor workers, make conclusions about the effects of time of day and other site-specific factors on labor productivity, as well as suggest improvements to implement in the construction process. Analysis suggests that supporting tasks, such as traveling or materials handling, constitute the majority of craft labors' efforts on the job site with the highest percentages occurring at the beginning and end of the work day. Direct work and delays were approximately equal at about 20% each hour with the highest peak occurring at lunchtime between 10:00 am and 11:00 am. The top suggestion to improve construction productivity would be to perform an extensive site utilization analysis due to the confined nature of this job site. Despite the limitations of an activity analysis to provide a complete prospective of all the factors that can affect craft labor productivity as well as the small number of days of data acquisition, this analysis provides a basic overview of the productivity at the Palo Verde Main construction site. Through this research, construction managers can more effectively generate site plans and schedules to increase labor productivity.
ContributorsFord, Emily Lucile (Author) / Grau, David (Thesis director) / Chong, Oswald (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134899-Thumbnail Image.png
Description
A public North American university needed a tool to automate their Vendor of Record rotation program. The goal was to give each vendor in the program fair opportunities and to be open and honest with how vendors were selected. This tool was created in Microsoft Excel with VBA to code

A public North American university needed a tool to automate their Vendor of Record rotation program. The goal was to give each vendor in the program fair opportunities and to be open and honest with how vendors were selected. This tool was created in Microsoft Excel with VBA to code macros. The three major Excel sheets are the Masters, the FM Interface, and the Executive Interface. The Masters act as a database and house data for each project. It is a plain Excel worksheet populated with tables. The FM Interface is a macro-enabled Excel workbook. It is distributed to every Facilities Manager in the program. The FM Interface communicates with the Masters in the background. The FMs use the various inputs and buttons to go through every step of procuring a project. They start by initializing a project, and are given a generated list of vendors who are qualified. This list is automatically rotated for every project. Then they fill in an RFQ and it is automatically emailed to the required vendors. When the Facilities Manager receives every quote, they input them into the program and they are saved to the database. When the project is complete, the manager must fill out a satisfaction survey to measure safety, cost, schedule, and quality of work. This is the main method of tracking vendor performance. The last sheet, the Executive Interface, is given only to the administrator of the program. It generates various reports, such as vendor performance, FM performance, and insurance status. It also has many administrative functions including insurance updating, vendor input, and delete project/vendor. The automated tool has been used without error on over 50 projects by 11 different Facilities Managers. The university's Facilities Management team is pleased with the automated process.
ContributorsSchneider, Steven Andrew (Author) / Sullivan, Kenneth (Thesis director) / Savicky, John (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134662-Thumbnail Image.png
Description
The overall energy consumption around the United States has not been reduced even with the advancement of technology over the past decades. Deficiencies exist between design and actual energy performances. Energy Infrastructure Systems (EIS) are impacted when the amount of energy production cannot be accurately and efficiently forecasted. Inaccurate engineering

The overall energy consumption around the United States has not been reduced even with the advancement of technology over the past decades. Deficiencies exist between design and actual energy performances. Energy Infrastructure Systems (EIS) are impacted when the amount of energy production cannot be accurately and efficiently forecasted. Inaccurate engineering assumptions can result when there is a lack of understanding on how energy systems can operate in real-world applications. Energy systems are complex, which results in unknown system behaviors, due to an unknown structural system model. Currently, there exists a lack of data mining techniques in reverse engineering, which are needed to develop efficient structural system models. In this project, a new type of reverse engineering algorithm has been applied to a year's worth of energy data collected from an ASU research building called MacroTechnology Works, to identify the structural system model. Developing and understanding structural system models is the first step in creating accurate predictive analytics for energy production. The associative network of the building's data will be highlighted to accurately depict the structural model. This structural model will enhance energy infrastructure systems' energy efficiency, reduce energy waste, and narrow the gaps between energy infrastructure design, planning, operation and management (DPOM).
ContributorsCamarena, Raquel Jimenez (Author) / Chong, Oswald (Thesis director) / Ye, Nong (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135209-Thumbnail Image.png
Description
Building construction, design and maintenance is a sector of engineering where improved efficiency will have immense impacts on resource consumption and environmental health. This research closely examines the Leadership in Environment and Energy Design (LEED) rating system and the International Green Construction Code (IgCC). The IgCC is a model code,

Building construction, design and maintenance is a sector of engineering where improved efficiency will have immense impacts on resource consumption and environmental health. This research closely examines the Leadership in Environment and Energy Design (LEED) rating system and the International Green Construction Code (IgCC). The IgCC is a model code, written with the same structure as many building codes. It is a standard that can be enforced if a city's government decides to adopt it. When IgCC is enforced, the buildings either meet all of the requirements set forth in the document or it fails to meet the code standards. The LEED Rating System, on the other hand, is not a building code. LEED certified buildings are built according to the standards of their local jurisdiction and in addition to that, building owners can chose to pursue a LEED certification. This is a rating system that awards points based on the sustainable measures achieved by a building. A comparison of these green building systems highlights their accomplishments in terms of reduced electricity usage, usage of low-impact materials, indoor environmental quality and other innovative features. It was determined that in general IgCC is more holistic, stringent approach to green building. At the same time the LEED rating system a wider variety of green building options. In addition, building data from LEED certified buildings was complied and analyzed to understand important trends. Both of these methods are progressing towards low-impact, efficient infrastructure and a side-by-side comparison, as done in this research, shed light on the strengths and weaknesses of each method, allowing for future improvements.
ContributorsCampbell, Kaleigh Ruth (Author) / Chong, Oswald (Thesis director) / Parrish, Kristen (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133914-Thumbnail Image.png
Description
This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a LEED Gold certified building, College Avenue Commons, located on Arizona State University's Tempe campus. It includes information on the background

This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a LEED Gold certified building, College Avenue Commons, located on Arizona State University's Tempe campus. It includes information on the background of previous studies in the area, some that agree with the research hypotheses and some that take a different path. Real-time data was collected hourly for energy consumption and external air temperature. Intermittent internal air temperature was collected by undergraduate researcher, Charles Banke. Regression analysis was used to prove two research hypotheses. The authors found no correlation between external air temperature and energy consumption, nor did they find a relationship between internal air temperature and energy consumption. This paper also includes recommendations for future work to improve the study.
ContributorsBanke, Charles Michael (Author) / Chong, Oswald (Thesis director) / Parrish, Kristen (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05