Matching Items (62)
153429-Thumbnail Image.png
Description
From 2D planar MOSFET to 3D FinFET, the geometry of semiconductor devices is getting more and more complex. Correspondingly, the number of mesh grid points increases largely to maintain the accuracy of carrier transport and heat transfer simulations. By substituting the conventional uniform mesh with non-uniform mesh, one can reduce

From 2D planar MOSFET to 3D FinFET, the geometry of semiconductor devices is getting more and more complex. Correspondingly, the number of mesh grid points increases largely to maintain the accuracy of carrier transport and heat transfer simulations. By substituting the conventional uniform mesh with non-uniform mesh, one can reduce the number of grid points. However, the problem of how to solve governing equations on non-uniform mesh is then imposed to the numerical solver. Moreover, if a device simulator is integrated into a multi-scale simulator, the problem size will be further increased. Consequently, there exist two challenges for the current numerical solver. One is to increase the functionality to accommodate non-uniform mesh. The other is to solve governing physical equations fast and accurately on a large number of mesh grid points.

This research rst discusses a 2D planar MOSFET simulator and its numerical solver, pointing out its performance limit. By analyzing the algorithm complexity, Multigrid method is proposed to replace conventional Successive-Over-Relaxation method in a numerical solver. A variety of Multigrid methods (standard Multigrid, Algebraic Multigrid, Full Approximation Scheme, and Full Multigrid) are discussed and implemented. Their properties are examined through a set of numerical experiments. Finally, Algebraic Multigrid, Full Approximation Scheme and Full Multigrid are integrated into one advanced numerical solver based on the exact requirements of a semiconductor device simulator. A 2D MOSFET device is used to benchmark the performance, showing that the advanced Multigrid method has higher speed, accuracy and robustness.
ContributorsGuo, Xinchen (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Committee member) / Ferry, David (Committee member) / Arizona State University (Publisher)
Created2015
153071-Thumbnail Image.png
Description
Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this response to mechanical perturbation, molecular devices which can be mechanically

Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this response to mechanical perturbation, molecular devices which can be mechanically gated can be developed. This thesis demonstrates three examples of the unique electromechanical properties of single molecules.

First, the electromechanical properties of 1,4-benzenedithiol molecular junctions are investigate. Counterintuitively, the conductance of this molecule is found to increase by more than an order of magnitude when stretched. This conductance increase is found to be reversible when the molecular junction is compressed. The current-voltage, conductance-voltage and inelastic electron tunneling spectroscopy characteristics are used to attribute the conductance increase to a strain-induced shift in the frontier molecular orbital relative to the electrode Fermi level, leading to resonant enhancement in the conductance.

Next, the effect of stretching-induced structural changes on charge transport in DNA molecules is studied. The conductance of single DNA molecules with lengths varying from 6 to 26 base pairs is measured and found to follow a hopping transport mechanism. The conductance of DNA molecules is highly sensitive to mechanical stretching, showing an abrupt decrease in conductance at surprisingly short stretching distances, with weak dependence on DNA length. This abrupt conductance decrease is attributed to force-induced breaking of hydrogen bonds in the base pairs at the end of the DNA sequence.

Finally, the effect of small mechanical modulation of the base separation on DNA conductance is investigated. The sensitivity of conductance to mechanical modulation is studied for molecules of different sequence and length. Sequences with purine-purine stacking are found to be more responsive to modulation than purine-pyrimidine sequences. This sensitivity is attributed to the perturbation of &pi-&pi stacking interactions and resulting effects on the activation energy and electronic coupling for the end base pairs.
ContributorsBruot, Christopher, 1986- (Author) / Tao, Nongjian (Thesis advisor) / Lindsay, Stuart (Committee member) / Mujica, Vladimiro (Committee member) / Ferry, David (Committee member) / Arizona State University (Publisher)
Created2014
154745-Thumbnail Image.png
Description
In the honey bee antennal lobe, uniglomerular projection neurons (uPNs) transiently spike to odor sensory stimuli with odor-specific response latencies, i.e., delays to first spike after odor

stimulation onset. Recent calcium imaging studies show that the spatio-temporal response profile of the activated uPNs are dynamic and changes as a result

In the honey bee antennal lobe, uniglomerular projection neurons (uPNs) transiently spike to odor sensory stimuli with odor-specific response latencies, i.e., delays to first spike after odor

stimulation onset. Recent calcium imaging studies show that the spatio-temporal response profile of the activated uPNs are dynamic and changes as a result

of associative conditioning, facilitating odor-detection of learned odors.

Moreover, odor-representation in the antennal lobe undergo reward-mediated plasticity processes that increase response delay variations

in the activated ensemble of uniglomerular projection neurons. Octopamine is necessarily involved in these plasticity processes. Yet, the cellular mechanisms are not

well understood. I hypothesize that octopamine modulates cholinergic transmission to uPNs by triggering translation

and upregulation of nicotinic receptors, which are more permeable to calcium. Consequently, this increased calcium-influx signals transcription factors that upregulate potassium

channels in the dendritic cortex of glomeruli, similar to synaptic plasticity mechanisms recently

shown in various insect species. A biophysical model of the antennal lobe circuit is developed in order to test the hypothesis that increased potassium channel expression in uPNs mediate response delays to first

spike, dynamically tuning odor-representations to facilitate odor-detection of learned odors.
ContributorsSmith, Adrian Nicholas (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Sinakevitch, Irina T. (Thesis advisor) / Smith, Brian H. (Committee member) / Arizona State University (Publisher)
Created2016
155852-Thumbnail Image.png
Description
Head and neck squamous cell carcinoma (HNSCC), the sixth most common cancer

type worldwide, accounts for more than 630,000 new cases and 350,000 deaths

annually. Drug-resistance and tumor recurrence are the most challenging problems

in head and neck cancer treatment. It is hypothesized that a very small fraction

of stem-like cells within HNSCC tumor,

Head and neck squamous cell carcinoma (HNSCC), the sixth most common cancer

type worldwide, accounts for more than 630,000 new cases and 350,000 deaths

annually. Drug-resistance and tumor recurrence are the most challenging problems

in head and neck cancer treatment. It is hypothesized that a very small fraction

of stem-like cells within HNSCC tumor, called cancer stem cells (CSCs), is

responsible for tumor initiation, progression, resistance and recurrence. It has also

been shown that IL-6 secreted by head and neck tumor-associated endothelial cells

(ECs) enhances the survival, self-renewal and tumorigenic potential of head and

neck CSCs. In this study we will use a mathematical multi-scale model which operates

at the intracellular, molecular, and tissue level to investigate the impacts of

EC-secreted IL-6 signaling on the crosstalk between tumor cells and ECs during

tumor growth. This model will be calibrated by using the experimental in vivo

data.

Eventually the model will be modified to explore the responses of head and neck

cancer cells to combination therapy involving Tocilizumab (an anti-IL-6R antibody)

and Cisplatin (the most frequently used chemotherapy for head and neck

cancer). The model will be able to predict the final proportion of CSCs in response

to endothelial cell-secreted IL-6 and drug therapies. The model will be validated

by directly comparing the experimental treatment data and the model predictions.

This could potentially provide a condition under which we could control enlargement

of the head and neck CSC pool and tumor recurrence. It may also suggest

the best bounds for Cisplatin and/or Tocilizumab dose and frequency to be tested

in the clinical trial.
ContributorsNazari, Fereshteh (Author) / Jackson, Trachette L. (Thesis advisor, Committee member) / Castillo-Chavez, Carlos (Committee member) / Towers, Sherry (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2017
155704-Thumbnail Image.png
Description
CMOS Technology has been scaled down to 7 nm with FinFET replacing planar MOSFET devices. Due to short channel effects, the FinFET structure was developed to provide better electrostatic control on subthreshold leakage and saturation current over planar MOSFETs while having the desired current drive. The FinFET structure has an

CMOS Technology has been scaled down to 7 nm with FinFET replacing planar MOSFET devices. Due to short channel effects, the FinFET structure was developed to provide better electrostatic control on subthreshold leakage and saturation current over planar MOSFETs while having the desired current drive. The FinFET structure has an undoped or fully depleted fin, which supports immunity from random dopant fluctuations (RDF – a phenomenon which causes a reduction in the threshold voltage and is prominent at sub 50 nm tech nodes due to lesser dopant atoms) and thus causes threshold voltage (Vth) roll-off by reducing the Vth. However, as the advanced CMOS technologies are shrinking down to a 5 nm technology node, subthreshold leakage and drain-induced-barrier-lowering (DIBL) are driving the introduction of new metal-oxide-semiconductor field-effect transistor (MOSFET) structures to improve performance. GAA field effect transistors are shown to be the potential candidates for these advanced nodes. In nanowire devices, due to the presence of the gate on all sides of the channel, DIBL should be lower compared to the FinFETs.

A 3-D technology computer aided design (TCAD) device simulation is done to compare the performance of FinFET and GAA nanowire structures with vertically stacked horizontal nanowires. Subthreshold slope, DIBL & saturation current are measured and compared between these devices. The FinFET’s device performance has been matched with the ASAP7 compact model with the impact of tensile and compressive strain on NMOS & PMOS respectively. Metal work function is adjusted for the desired current drive. The nanowires have shown better electrostatic performance over FinFETs with excellent improvement in DIBL and subthreshold slope. This proves that horizontal nanowires can be the potential candidate for 5 nm technology node. A GAA nanowire structure for 5 nm tech node is characterized with a gate length of 15 nm. The structure is scaled down from 7 nm node to 5 nm by using a scaling factor of 0.7.
ContributorsRana, Parshant (Author) / Clark, Lawrence (Thesis advisor) / Ferry, David (Committee member) / Brunhaver, John (Committee member) / Arizona State University (Publisher)
Created2017
155785-Thumbnail Image.png
Description
This dissertation will look at large scale collaboration through the lens of online communities to answer questions about what makes a collaboration persist. Results address how collaborations attract contributions, behaviors that could give rise to patterns seen in the data, and the properties of collaborations that drive those behaviors.

It

This dissertation will look at large scale collaboration through the lens of online communities to answer questions about what makes a collaboration persist. Results address how collaborations attract contributions, behaviors that could give rise to patterns seen in the data, and the properties of collaborations that drive those behaviors.

It is understood that collaborations, online and otherwise, must retain users to remain productive. However, before users can be retained they must be recruited. In the first project, a few necessary properties of the ``attraction'' function are identified by constraining the dynamics of an ODE (Ordinary Differential Equation) model. Additionally, more than 100 communities of the Stack Exchange networks are parameterized and their distributions reported.

Collaborations do not exist in a vacuum, they compete with and share users with other collaborations. To address this, the second project focuses on an agent-based model (ABM) of a community of online collaborations using a mechanistic approach. The ABM is compared to data obtained from the Stack Exchange network and produces similar distributional patterns.

The third project is a thorough sensitivity analysis of the model created in the second project. A variance based sensitivity analysis is performed to evaluate the relative importance of 21 parameters of the model. Results indicate that population parameters impact many outcome metrics, though even those parameters that tend towards a low impact can be crucial for some outcomes.
ContributorsManning, Miles (Author) / Janssen, Marcus A (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Anderies, John M (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2017
155333-Thumbnail Image.png
Description
This dissertation discusses the Cournot competition and competitions in the exploitation of common pool resources and its extension to the tragedy of the commons. I address these models by using potential games and inquire how these models reflect the real competitions for provisions of environmental resources. The Cournot models are

This dissertation discusses the Cournot competition and competitions in the exploitation of common pool resources and its extension to the tragedy of the commons. I address these models by using potential games and inquire how these models reflect the real competitions for provisions of environmental resources. The Cournot models are dependent upon how many firms there are so that the resultant Cournot-Nash equilibrium is dependent upon the number of firms in oligopoly. But many studies do not take into account how the resultant Cournot-Nash equilibrium is sensitive to the change of the number of firms. Potential games can find out the outcome when the number of firms changes in addition to providing the "traditional" Cournot-Nash equilibrium when the number of firms is fixed. Hence, I use potential games to fill the gaps that exist in the studies of competitions in oligopoly and common pool resources and extend our knowledge in these topics. In specific, one of the rational conclusions from the Cournot model is that a firm's best policy is to split into separate firms. In real life, we usually witness the other way around; i.e., several firms attempt to merge and enjoy the monopoly profit by restricting the amount of output and raising the price. I aim to solve this conundrum by using potential games. I also clarify, within the Cournot competition model, how regulatory intervention in the management of environmental pollution externalities affects the equilibrium number of polluters. In addition, the tragedy of the commons is the term widely used to describe the overexploitation of open-access common-pool resources. Open-access encourages potential resource users to continue to enter the resource up to the point where rents are exhausted. The resulting level of resource use is higher than is socially optimal, and in extreme cases can lead to the collapse of the resource and the communities that may depend on it. In this paper I use the concept of potential games to evaluate the relation between the cost of resource use and the equilibrium number of resource users in open access regimes. I find that costs of access and costs of production are sufficient to determine the equilibrium number of resource users, and that there is in fact a continuum between Cournot competition and the tragedy of the commons. I note that the various common pool resource management regimes identified in the empirical literature are associated with particular cost structures, and hence that this may be the mechanism that determines the number of resource users accessing the resource.
ContributorsMamada, Robert H (Author) / Perrings, Charles (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Lampert, Adam (Committee member) / Arizona State University (Publisher)
Created2017
155952-Thumbnail Image.png
Description
Foraging strategies in social animals are often shaped by change in an organism's natural surrounding. Foraging behavior can hence be highly plastic, time, and condition dependent. The motivation of my research is to explore the effects of dispersal behavior in predators or parasites on population dynamics in heterogeneous environments

Foraging strategies in social animals are often shaped by change in an organism's natural surrounding. Foraging behavior can hence be highly plastic, time, and condition dependent. The motivation of my research is to explore the effects of dispersal behavior in predators or parasites on population dynamics in heterogeneous environments by developing varied models in different contexts through closely working with ecologists. My models include Ordinary Differential Equation (ODE)-type meta population models and Delay Differential Equation (DDE) models with validation through data. I applied dynamical theory and bifurcation theory with carefully designed numerical simulations to have a better understanding on the profitability and cost of an adaptive dispersal in organisms. My work on the prey-predator models provide important insights on how different dispersal strategies may have different impacts on the spatial patterns and also shows that the change of dispersal strategy in organisms may have stabilizing or destabilizing effects leading to extinction or coexistence of species. I also develop models for honeybee population dynamics and its interaction with the parasitic Varroa mite. At first, I investigate the effect of dispersal on honeybee colonies under infestation by the Varroa mites. I then provide another single patch model by considering a stage structure time delay system from brood to adult honeybee. Through a close collaboration with a biologist, a honeybee and mite population data was first used to validate my model and I estimated certain unknown parameters by utilizing least square Monte Carlo method. My analytical, bifurcations, sensitivity analysis, and numerical studies first reveal the dynamical outcomes of migration. In addition, the results point us in the direction of the most sensitive life history parameters affecting the population size of a colony. These results provide novel insights on the effects of foraging and Varroa mites on colony survival.
ContributorsMessan, Komi Segno (Author) / Kang, Yun (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Degrandi-Hoffman, Gloria D (Committee member) / Janssen, Marco A (Committee member) / Arizona State University (Publisher)
Created2017
156506-Thumbnail Image.png
Description
In this dissertation the potential impact of some social, cultural and economic factors on

Ebola Virus Disease (EVD) dynamics and control are studied. In Chapter two, the inability

to detect and isolate a large fraction of EVD-infected individuals before symptoms onset is

addressed. A mathematical model, calibrated with data from the 2014 West

In this dissertation the potential impact of some social, cultural and economic factors on

Ebola Virus Disease (EVD) dynamics and control are studied. In Chapter two, the inability

to detect and isolate a large fraction of EVD-infected individuals before symptoms onset is

addressed. A mathematical model, calibrated with data from the 2014 West African outbreak,

is used to show the dynamics of EVD control under various quarantine and isolation

effectiveness regimes. It is shown that in order to make a difference it must reach a high

proportion of the infected population. The effect of EVD-dead bodies has been incorporated

in the quarantine effectiveness. In Chapter four, the potential impact of differential

risk is assessed. A two-patch model without explicitly incorporate quarantine is used to

assess the impact of mobility on communities at risk of EVD. It is shown that the

overall EVD burden may lessen when mobility in this artificial high-low risk society is allowed.

The cost that individuals in the low-risk patch must pay, as measured by secondary

cases is highlighted. In Chapter five a model explicitly incorporating patch-specific quarantine

levels is used to show that quarantine a large enough proportion of the population

under effective isolation leads to a measurable reduction of secondary cases in the presence

of mobility. It is shown that sharing limited resources can improve the effectiveness of

EVD effective control in the two-patch high-low risk system. Identifying the conditions

under which the low-risk community would be willing to accept the increases in EVD risk,

needed to reduce the total number of secondary cases in a community composed of two

patches with highly differentiated risks has not been addressed. In summary, this dissertation

looks at EVD dynamics within an idealized highly polarized world where resources

are primarily in the hands of a low-risk community – a community of lower density, higher

levels of education and reasonable health services – that shares a “border” with a high-risk

community that lacks minimal resources to survive an EVD outbreak.
ContributorsEspinoza Cortes, Baltazar (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Kang, Yun (Committee member) / Safan, Muntaser (Committee member) / Arizona State University (Publisher)
Created2018
156511-Thumbnail Image.png
Description
This dissertation explores the impact of environmental dependent risk on disease dynamics within a Lagrangian modeling perspective; where the identity (defined by place of residency) of individuals is preserved throughout the epidemic process. In Chapter Three, the impact of individuals who refuse to be vaccinated is explored. MMR vaccination and

This dissertation explores the impact of environmental dependent risk on disease dynamics within a Lagrangian modeling perspective; where the identity (defined by place of residency) of individuals is preserved throughout the epidemic process. In Chapter Three, the impact of individuals who refuse to be vaccinated is explored. MMR vaccination and birth rate data from the State of California are used to determine the impact of the anti-vaccine movement on the dynamics of growth of the anti-vaccine sub-population. Dissertation results suggest that under realistic California social dynamics scenarios, it is not possible to revert the influence of anti-vaccine

contagion. In Chapter Four, the dynamics of Zika virus are explored in two highly distinct idealized environments defined by a parameter that models highly distinctive levels of risk, the result of vector and host density and vector control measures. The underlying assumption is that these two communities are intimately connected due to economics with the impact of various patterns of mobility being incorporated via

the use of residency times. In short, a highly heterogeneous community is defined by its risk of acquiring a Zika infection within one of two "spaces," one lacking access to health services or effective vector control policies (lack of resources or ignored due to high levels of crime, or poverty, or both). Low risk regions are defined as those with access to solid health facilities and where vector control measures are implemented routinely. It was found that the better connected these communities are, the existence of communities where mobility between risk regions is not hampered, lower the overall, two patch Zika prevalence. Chapter Five focuses on the dynamics of tuberculosis (TB), a communicable disease, also on an idealized high-low risk set up. The impact of mobility within these two highly distinct TB-risk environments on the dynamics and control of this disease is systematically explored. It is found that collaboration and mobility, under some circumstances, can reduce the overall TB burden.
ContributorsMoreno Martínez, Victor Manuel (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Kang, Yun (Committee member) / Mubayi, Anuj (Committee member) / Arizona State University (Publisher)
Created2018