Matching Items (127)
148155-Thumbnail Image.png
Description

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of the hybrid system increases initially then decreases because the decreasing flow rate of air begins to outweigh the increasing hydrogen concentration. This occurs at an equivalence ratio of 2 for CH4. The thermodynamic cycle is analyzed using a temperature entropy diagram and a pressure volume diagram. These thermodynamic diagrams show as equivalence ratio increases, the power generated by the turbine in the hybrid setup decreases. Thermodynamic analysis was performed to verify that energy is conserved and the total chemical energy going into the system was equal to the heat rejected by the system plus the power generated by the system. Of the six fuels, the hybrid system performs best with H2 as the fuel. The electrical efficiency with H2 is predicted to be 27%, CH4 is 24%, C3H8 is 22%, JP-4 is 21%, JP-5 is 20%, and JP-10(L) is 20%. When H2 fuel is used, the overall integrated system is predicted to be 24.5% more efficient than the standard gas turbine system. The integrated system is predicted to be 23.0% more efficient with CH4, 21.9% more efficient with C3H8, 22.7% more efficient with JP-4, 21.3% more efficient with JP-5, and 20.8% more efficient with JP-10(L). The sensitivity of the model is investigated using various fuel utilizations. When CH4 fuel is used, the integrated system is predicted to be 22.7% more efficient with a fuel utilization efficiency of 90% compared to that of 30%.

ContributorsRupiper, Lauren Nicole (Author) / Milcarek, Ryan (Thesis director) / Wang, Liping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
150180-Thumbnail Image.png
Description
The oceans play an essential role in global biogeochemical cycles and in regulating climate. The biological carbon pump, the photosynthetic fixation of carbon dioxide by phytoplankton and subsequent sequestration of organic carbon into deep water, combined with the physical carbon pump, make the oceans the only long-term net sink for

The oceans play an essential role in global biogeochemical cycles and in regulating climate. The biological carbon pump, the photosynthetic fixation of carbon dioxide by phytoplankton and subsequent sequestration of organic carbon into deep water, combined with the physical carbon pump, make the oceans the only long-term net sink for anthropogenic carbon dioxide. A full understanding of the workings of the biological carbon pump requires a knowledge of the role of different taxonomic groups of phytoplankton (protists and cyanobacteria) to organic carbon export. However, this has been difficult due to the degraded nature of particles sinking into particle traps, the main tools employed by oceanographers to collect sinking particulate matter in the ocean. In this study DNA-based molecular methods, including denaturing gradient gel electrophoresis, cloning and sequencing, and taxon-specific quantitative PCR, allowed for the first time for the identification of which protists and cyanobacteria contributed to the material collected by the traps in relation to their presence in the euphotic zone. I conducted this study at two time-series stations in the subtropical North Atlantic Ocean, one north of the Canary Islands, and one located south of Bermuda. The Bermuda study allowed me to investigate seasonal and interannual changes in the contribution of the plankton community to particle flux. I could also show that small unarmored taxa, including representatives of prasinophytes and cyanobacteria, constituted a significant fraction of sequences recovered from sediment trap material. Prasinophyte sequences alone could account for up to 13% of the clone library sequences of trap material during bloom periods. These observations contradict a long-standing paradigm in biological oceanography that only large taxa with mineral shells are capable of sinking while smaller, unarmored cells are recycled in the euphotic zone through the microbial loop. Climate change and a subsequent warming of the surface ocean may lead to a shift in the protist community toward smaller cell size in the future, but in light of these findings these changes may not necessarily lead to a reduction in the strength of the biological carbon pump.
ContributorsAmacher, Jessica (Author) / Neuer, Susanne (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Lomas, Michael (Committee member) / Wojciechowski, Martin (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2011
151750-Thumbnail Image.png
Description
The Cape Floral Region (CFR) in southwestern South Africa is one of the most diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of only ~90,000 km2. Many have suggested that the CFR's heterogeneous environment, with respect to landscape gradients, vegetation, rainfall, elevation,

The Cape Floral Region (CFR) in southwestern South Africa is one of the most diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of only ~90,000 km2. Many have suggested that the CFR's heterogeneous environment, with respect to landscape gradients, vegetation, rainfall, elevation, and soil fertility, is responsible for the origin and maintenance of this biodiversity. While studies have struggled to link species diversity with these features, no study has attempted to associate patterns of gene flow with environmental data to determine how CFR biodiversity evolves on different scales. Here, a molecular population genetic data is presented for a widespread CFR plant, Leucadendron salignum, across 51 locations with 5-kb of chloroplast (cpDNA) and 6-kb of unlinked nuclear (nuDNA) DNA sequences in a dataset of 305 individuals. In the cpDNA dataset, significant genetic structure was found to vary on temporal and spatial scales, separating Western and Eastern Capes - the latter of which appears to be recently derived from the former - with the highest diversity in the heart of the CFR in a central region. A second study applied a statistical model using vegetation and soil composition and found fine-scale genetic divergence is better explained by this landscape resistance model than a geographic distance model. Finally, a third analysis contrasted cpDNA and nuDNA datasets, and revealed very little geographic structure in the latter, suggesting that seed and pollen dispersal can have different evolutionary genetic histories of gene flow on even small CFR scales. These three studies together caution that different genomic markers need to be considered when modeling the geographic and temporal origin of CFR groups. From a greater perspective, the results here are consistent with the hypothesis that landscape heterogeneity is one driving influence in limiting gene flow across the CFR that can lead to species diversity on fine-scales. Nonetheless, while this pattern may be true of the widespread L. salignum, the extension of this approach is now warranted for other CFR species with varying ranges and dispersal mechanisms to determine how universal these patterns of landscape genetic diversity are.
ContributorsTassone, Erica (Author) / Verrelli, Brian C (Thesis advisor) / Dowling, Thomas (Committee member) / Cartwright, Reed (Committee member) / Rosenberg, Michael S. (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2013
152239-Thumbnail Image.png
Description
Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the

Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the porous rock frame. This tensile stress almost always exceeds the tensile strength of the rock and it causes a tensile failure of the rock, leading to wellbore instability. In a porous rock, not all pores are choked at the same flow rate, and when just one pore is choked, the flow through the entire porous medium should be considered choked as the gas pressure gradient at the point of choking becomes singular. This thesis investigates the choking condition for compressible gas flow in a single microscopic pore. Quasi-one-dimensional analysis and axisymmetric numerical simulations of compressible gas flow in a pore scale varicose tube with a number of bumps are carried out, and the local Mach number and pressure along the tube are computed for the flow near choking condition. The effects of tube length, inlet-to-outlet pressure ratio, the number of bumps and the amplitude of the bumps on the choking condition are obtained. These critical values provide guidance for avoiding the choking condition in practice.
ContributorsYuan, Jing (Author) / Chen, Kangping (Thesis advisor) / Wang, Liping (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151485-Thumbnail Image.png
Description
Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various

Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various working fluids. Theoretical and experimental analyses of a turbine-generator assembly utilizing compressed air, saturated steam and water as the working fluids were performed and are presented in this work. A brief background and explanation of the technology is provided along with potential applications. A theoretical thermodynamic analysis is outlined, resulting in turbine and rotor efficiencies, power outputs and Reynolds numbers calculated for the turbine for various combinations of working fluids and inlet nozzles. The results indicate the turbine is capable of achieving a turbine efficiency of 31.17 ± 3.61% and an estimated rotor efficiency 95 ± 9.32%. These efficiencies are promising considering the numerous losses still present in the current design. Calculation of the Reynolds number provided some capability to determine the flow behavior and how that behavior impacts the performance and efficiency of the Tesla turbine. It was determined that turbulence in the flow is essential to achieving high power outputs and high efficiency. Although the efficiency, after peaking, begins to slightly taper off as the flow becomes increasingly turbulent, the power output maintains a steady linear increase.
ContributorsPeshlakai, Aaron (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2012
148412-Thumbnail Image.png
Description

This work summarizes the development of a dynamic measurement platform in a cryostat to measure sample temperature response to space-like conditions and the creation a MATLAB theoretical model to predict sample temperature responses in the platform itself. An interesting variable-emittance sample called a Fabry-Perot emitter was studied for its thermal

This work summarizes the development of a dynamic measurement platform in a cryostat to measure sample temperature response to space-like conditions and the creation a MATLAB theoretical model to predict sample temperature responses in the platform itself. An interesting variable-emittance sample called a Fabry-Perot emitter was studied for its thermal homeostasis behavior using the two developments. Using the measurement platform, it was shown that there was no thermal homeostatic behavior demonstrated by the sample at steady state temperatures. Theoretical calculations show other ways to demonstrate the cooling homeostasis behavior through time-varying heat inputs. Factors within the system such as heat loss and thermal mass contributed to an inhibited sample performance in the platform. Future work will have to be conducted, not only to verify the findings of the initial experiments but also to improve the measurement platform and the theoretical model.

ContributorsBoman, Neal D (Author) / Wang, Liping (Thesis director) / Taylor, Syndey (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148418-Thumbnail Image.png
Description

A thermochromic mid-infrared filter is designed, where a spectrally-selective transmittance peak exists while vanadium dioxide layers are below their transition temperature but broad opaqueness is observed below the transition temperature. This filter takes advantage of interference effects between a silicon spacer and insulating vanadium dioxide to create the transmittance peak

A thermochromic mid-infrared filter is designed, where a spectrally-selective transmittance peak exists while vanadium dioxide layers are below their transition temperature but broad opaqueness is observed below the transition temperature. This filter takes advantage of interference effects between a silicon spacer and insulating vanadium dioxide to create the transmittance peak and the drastic optical property change between insulating and metallic vanadium dioxide. The theoretical performance of the filter in energy dissipation and thermal camouflaging applications is analyzed and can be optimized by tuning the thicknesses of the thin-film layers.

ContributorsChao, Jeremy (Author) / Wang, Liping (Thesis director) / Taylor, Sydney (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135568-Thumbnail Image.png
Description
Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated

Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated habitats. Populations in six natural ephemeral pool habitats located in two different regions of the Sonoran Desert and a transition area between the Sonoran and Chihuahuan Deserts were sampled. Sequences from Genbank were used for reference points in the determination of species as well as to further identify regional genetic distance within species. This study estimated the amount of within and between genetic distance of individuals from each region and population through the use of a neutral marker, cytochrome oxidase I (COI). We concluded that, although the method of passive dispersal may differ between the two genera, the differences do not results in different patterns of genetic distances between regions and populations. Furthermore, we only found the putative species, Triops longicaudatus "short", with enough distinct speciation. Although Triops longicaudatus "long" and Triops newberryi may be in the early stages of speciation, this study does not find enough support to conclude that they have separated.
ContributorsMurphy Jr., Patrick Joseph (Author) / Rutowski, Ronald (Thesis director) / Cartwright, Reed (Committee member) / Lessios, Nikos (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
There is a relative lack of basic information about early diverging species of the genus Medicago that, for the most part, were formerly considered to be in the genus Trigonella. Species boundaries are not always clear, for example, the most recent treatment of the genus Medicago submerged four previously recognized

There is a relative lack of basic information about early diverging species of the genus Medicago that, for the most part, were formerly considered to be in the genus Trigonella. Species boundaries are not always clear, for example, the most recent treatment of the genus Medicago submerged four previously recognized species into Medicago monantha, a widely distributed species in the Middle East. These species are recognized on the basis of morphological characters such as fruit number, shape, length and areole shape and size, but species identification is still challenging and further clarification of species boundaries is needed. There is also a lack of cytogenetic information. Some of the relatively few published chromosome numbers, e.g. 2n=28, and 44, differ from those of the rest of the genus, which are mostly 2n=16 or multiples thereof, although seven species are 2n=14. As part of a larger study of the genome and chromosome number evolution in the genus Medicago, we obtained genome size data using flow cytometry for 44 accessions of 14 currently recognized early diverging species, with a focus on Medicago monantha. Chromosome numbers were obtained using standard cytological methods. Our chromosome number data confirm a chromosome number of 2n=16 for M. brachycarpa (genome size of 1.33 pg), and M. monspeliaca (1.88 pg), and 2n=28 for M. polyceratia (2.77 pg) and give new numbers for some species; 2n=16 for M. biflora (2.7 pg), and a previously unknown chromosome number for these early diverging species of 2n=14 for Medicago fischeriana (~1.35 pg). Interestingly, our data support the hypothesis that there are at least two entities within M. monantha as currently recognized that differ in chromosome number and genome size; two accessions had chromosome numbers of 2n=26 and 30 with corresponding genome sizes of 2.68 and 2.85 pg and three other accessions had chromosome numbers 2n=36,44, and another 44 with genome sizes of 3.94, 3.89, and 4.04 pg. There are also some significant morphological differences between these two entities, such as fruit length and areole area. These data lead to both further clarification of the relationships of early diverging Medicago and help build a platform for more in-depth research concerning the evolution of chromosome number and genome size within Medicago.
ContributorsSteier, Julia Elizabeth (Author) / Steele, Kelly (Thesis director) / Wojciechowski, Martin (Committee member) / Fehlberg, Shannon (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135609-Thumbnail Image.png
Description
Zeolitic Imidazolate Frameworks (ZIFs) are a promising technology for the separation of gases. ZIFs represent a type of hybrid material that is a subset of metal organic frameworks while displaying zeolite properties. ZIFs have tunable pore metrics, high thermal stability, and large surface areas giving them advantages over traditional zeolites.

Zeolitic Imidazolate Frameworks (ZIFs) are a promising technology for the separation of gases. ZIFs represent a type of hybrid material that is a subset of metal organic frameworks while displaying zeolite properties. ZIFs have tunable pore metrics, high thermal stability, and large surface areas giving them advantages over traditional zeolites. The experiment sought to determine the flux of hexane vapor through ZIF-68 with Fourier Transform Infrared Spectroscopy (FTIR) mapping. FTIR mapping was used to obtain three spectra per crystal and the concentration gradient was analyzed to determine the flux. ZIF-68 was completely stable when loaded with hexane and exposed to the atmosphere. There was no hexane diffusion out of the crystal. As a result, ZIF-68 was heated to 50°C to increase diffusion and calculate the flux. ZIF-68 adhered to Knudsen Diffusion, and the flux was calculated to be 2.00*10-5 kg mol/s*m2. The small flux occurred because almost no concentration gradient was obtained through the crystal. It was hypothesized that the resistance in the crystal was substantially lower than the resistance at the boundary layer, which would have caused a small concentration gradient. Using film mass transfer theory, the resistance inside the crystal was found to be 1200 times lower than the resistance at the boundary layer confirming the hypothesis.
ContributorsSigrist, Dallas Dale (Author) / Lin, Jerry (Thesis director) / Wang, Liping (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05