Matching Items (47)
151272-Thumbnail Image.png
Description
In social insect colonies, as with individual animals, the rates of biological processes scale with body size. The remarkable explanatory power of metabolic allometry in ecology and evolutionary biology derives from the great diversity of life exhibiting a nonlinear scaling pattern in which metabolic rates are not proportional to mass,

In social insect colonies, as with individual animals, the rates of biological processes scale with body size. The remarkable explanatory power of metabolic allometry in ecology and evolutionary biology derives from the great diversity of life exhibiting a nonlinear scaling pattern in which metabolic rates are not proportional to mass, but rather exhibit a hypometric relationship with body size. While one theory suggests that the supply of energy is a major physiological constraint, an alternative theory is that the demand for energy is regulated by behavior. The central hypothesis of this dissertation research is that increases in colony size reduce the proportion of individuals actively engaged in colony labor with consequences for energetic scaling at the whole-colony level of biological organization. A combination of methods from comparative physiology and animal behavior were developed to investigate scaling relationships in laboratory-reared colonies of the seed-harvester ant, Pogonomyrmex californicus. To determine metabolic rates, flow-through respirometry made it possible to directly measure the carbon dioxide production and oxygen consumption of whole colonies. By recording video of colony behavior, for which ants were individually paint-marked for identification, it was possible to reconstruct the communication networks through which information is transmitted throughout the colony. Whole colonies of P. californicus were found to exhibit a robust hypometric allometry in which mass-specific metabolic rates decrease with increasing colony size. The distribution of walking speeds also scaled with colony size so that larger colonies were composed of relatively more inactive ants than smaller colonies. If colonies were broken into random collections of workers, metabolic rates scaled isometrically, but when entire colonies were reduced in size while retaining functionality (queens, juveniles, workers), they continued to exhibit a metabolic hypometry. The communication networks in P. californicus colonies contain a high frequency of feed-forward interaction patterns consistent with those of complex regulatory systems. Furthermore, the scaling of these communication pathways with size is a plausible mechanism for the regulation of whole-colony metabolic scaling. The continued development of a network theory approach to integrating behavior and metabolism will reveal insights into the evolution of collective animal behavior, ecological dynamics, and social cohesion.
ContributorsWaters, James S., 1983- (Author) / Harrison, Jon F. (Thesis advisor) / Quinlan, Michael C. (Committee member) / Pratt, Stephen C. (Committee member) / Fewell, Jennifer H. (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
135568-Thumbnail Image.png
Description
Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated

Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated habitats. Populations in six natural ephemeral pool habitats located in two different regions of the Sonoran Desert and a transition area between the Sonoran and Chihuahuan Deserts were sampled. Sequences from Genbank were used for reference points in the determination of species as well as to further identify regional genetic distance within species. This study estimated the amount of within and between genetic distance of individuals from each region and population through the use of a neutral marker, cytochrome oxidase I (COI). We concluded that, although the method of passive dispersal may differ between the two genera, the differences do not results in different patterns of genetic distances between regions and populations. Furthermore, we only found the putative species, Triops longicaudatus "short", with enough distinct speciation. Although Triops longicaudatus "long" and Triops newberryi may be in the early stages of speciation, this study does not find enough support to conclude that they have separated.
ContributorsMurphy Jr., Patrick Joseph (Author) / Rutowski, Ronald (Thesis director) / Cartwright, Reed (Committee member) / Lessios, Nikos (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136797-Thumbnail Image.png
Description
Cuticular hydrocarbons (CHCs) play a crucial role in social insect recognition systems. In this study we investigated mate choice in the red harvester ant, Pogonomyrmex barbatus. In Phoenix, this species has two lineages, J1 and J2, which look identical, but are genetically isolated. In the genetic caste determination (GCD) system

Cuticular hydrocarbons (CHCs) play a crucial role in social insect recognition systems. In this study we investigated mate choice in the red harvester ant, Pogonomyrmex barbatus. In Phoenix, this species has two lineages, J1 and J2, which look identical, but are genetically isolated. In the genetic caste determination (GCD) system workers and queens are determined by their genotype (i.e., workers develop from interlineage crosses, queens from intralineage crosses). As such, J1 and J2 lineages are dependent on each other in order for colonies to produce both workers and reproductive queens. Given their genetic isolation and interdependence, we hypothesized that the CHCs of alate males and queens are affected by lineage, and that differences in the CHC profile are used for mate recognition. We tested these hypotheses by analyzing the lineage distributions of actively mating pairs (n=65), and compared them with the overall distribution of male and female sexuals (n=180). We additionally analyzed the five most abundant CHC compounds for 20 of the actively mating P. barbatus alate male and queen pairs to determine how variable the two lineages are between each sex. We found that mating pair distributions did not significantly differ from those expected under a random mating system (�2= 1.4349, P= 0.6973), however, CHC profiles did differ between J1 and J2 lineages and sexes for the five most abundant CHC compounds. Our results show that random mating is taking place in this population, however given the differences observed in CHC profiles, mate recognition could be taking place.
ContributorsTula Del Moral Testai, Pedro Rafael (Co-author) / Cash, Elizabeth (Co-author) / Gadau, Juergen (Thesis director) / Liebig, Juergen (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136967-Thumbnail Image.png
Description
The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation

The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation of a blindness allele for varying amounts of migration and selection. For populations where the initial frequency is quite low, genetic drift plays a much larger role in the fixation of blindness than populations where the initial frequency is high. In populations where the initial frequency is high, genetic drift plays almost no role in fixation. Our results suggest that migration plays a greater role in the fate of the blindness allele than selection.
ContributorsMerry, Alexandra Leigh (Author) / Cartwright, Reed (Thesis director) / Rosenberg, Michael (Committee member) / Schwartz, Rachel (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137061-Thumbnail Image.png
Description
I tested the hypothesis that in mature colonies of the seed harvester Pogonomyrmex californicus ant species, paired pleometrotic queens would produce workers more efficiently after a massive removal of their work force than haplometrotic queens, paired pleometrotic with haplometrotic queens, and single pleometrotic queens. I suggested that the paired pleometrotic

I tested the hypothesis that in mature colonies of the seed harvester Pogonomyrmex californicus ant species, paired pleometrotic queens would produce workers more efficiently after a massive removal of their work force than haplometrotic queens, paired pleometrotic with haplometrotic queens, and single pleometrotic queens. I suggested that the paired pleometrotic queens would have an advantage of cooperating together in reproducing more workers quicker than the other conditions to make up for the lost workers. This would demonstrate a benefit that pleometrosis has over haplometrosis for mature colonies, which would explain why pleometrosis continues for P.californicus after colony foundation. After removing all but twenty workers for every colony, I took pictures and counted the emerging brood for 52 days. Analyses showed that the paired pleometrotic queens and the haplometrotic queens both grew at an equally efficient rate and the paired pleometrotic and haplometrotic queens growing the least efficiently. However, the results were not significant and did not support the hypothesis that paired pleometrotic queens recover from worker loss more proficiently than other social systems.
ContributorsFernandez, Marisa Raquel (Author) / Fewell, Jennifer (Thesis director) / Gadau, Juergen (Committee member) / Haney, Brian (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Psychology (Contributor)
Created2014-05
137292-Thumbnail Image.png
Description
Wolbachia is a genus of obligately intracellular bacterial endosymbionts of arthropods and nematodes, infecting up to 66% of all such species. In order to ensure its transmission, it may modify host reproduction by inducing one of four phenotypes: cytoplasmic incompatibility, feminization of genetic males, killing of male embryos, and induction

Wolbachia is a genus of obligately intracellular bacterial endosymbionts of arthropods and nematodes, infecting up to 66% of all such species. In order to ensure its transmission, it may modify host reproduction by inducing one of four phenotypes: cytoplasmic incompatibility, feminization of genetic males, killing of male embryos, and induction of thelytokous parthenogenesis. This investigation was a characterization of the so-far unexamined Wolbachia infection of Pogonomyrmex ants. Five main questions were addressed: whether Wolbachia infection rates vary between North and South America, whether infection rates are dependent on host range, whether Wolbachia affects the caste determination of P. barbatus, whether infection rates in Pogonomyrmex are similar to those of other ants, and whether Wolbachia phylogeny parallels the phylogeny of its Pogonomyrmex hosts. Using PCR amplification of the wsp, ftsZ, and gatB loci, Wolbachia infections were detected in four of fifteen Pogonomyrmex species (26.7%), providing the first known evidence of Wolbachia infection in this genus. All infected species were from South America, specifically Argentina. Therefore, Wolbachia has no role in the caste determination of the North American species P. barbatus. Additionally, while it appears that the incidence of Wolbachia in Pogonomyrmex may be limited to South America, host range did not correlate with infection status. The incidence of Wolbachia in Pogonomyrmex as a whole was similar to that of invasive Solenopsis and Linepithema species, but not to Wasmannia auropunctata or Anoplolepis gracilipes, which retain Wolbachia infection in non-native locations. This suggests that there may be a parallel in Wolbachia infection spread in certain short-term models of species colonization and long-term models of genus radiation. Finally, there was no congruity between host and parasite phylogeny according to maximum likelihood analyses, necessarily due to horizontal transfer of Wolbachia between hosts and lateral gene transfer between Wolbachia strains within hosts.
ContributorsHarris, Alexandre Marm (Author) / Gadau, Juergen (Thesis director) / Martin, Thomas (Committee member) / Helmkampf, Martin Erik (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136360-Thumbnail Image.png
Description
The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern

The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern web development technologies, Genie was developed as a simulator to help educators in biology, genetics, and evolution classrooms teach their students about population genetics. Because Genie was designed for the modern web, it is highly accessible to both educators and students, who can access the web application using any modern web browser on virtually any device. Genie demonstrates the efficacy of web devel- opment technologies for demonstrating and simulating complex processes, and it will be a unique educational tool for educators who teach population genetics.
ContributorsRoos, Benjamin Hirsch (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Mayron, Liam (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
130367-Thumbnail Image.png
Description
Background
Improvements in sequencing technology now allow easy acquisition of large datasets; however, analyzing these data for phylogenetics can be challenging. We have developed a novel method to rapidly obtain homologous genomic data for phylogenetics directly from next-generation sequencing reads without the use of a reference genome. This software, called SISRS,

Background
Improvements in sequencing technology now allow easy acquisition of large datasets; however, analyzing these data for phylogenetics can be challenging. We have developed a novel method to rapidly obtain homologous genomic data for phylogenetics directly from next-generation sequencing reads without the use of a reference genome. This software, called SISRS, avoids the time consuming steps of de novo whole genome assembly, multiple genome alignment, and annotation.
Results
For simulations SISRS is able to identify large numbers of loci containing variable sites with phylogenetic signal. For genomic data from apes, SISRS identified thousands of variable sites, from which we produced an accurate phylogeny. Finally, we used SISRS to identify phylogenetic markers that we used to estimate the phylogeny of placental mammals. We recovered eight phylogenies that resolved the basal relationships among mammals using datasets with different levels of missing data. The three alternate resolutions of the basal relationships are consistent with the major hypotheses for the relationships among mammals, all of which have been supported previously by different molecular datasets.
Conclusions
SISRS has the potential to transform phylogenetic research. This method eliminates the need for expensive marker development in many studies by using whole genome shotgun sequence data directly. SISRS is open source and freely available at https://github.com/rachelss/SISRS/releases.
ContributorsSchwartz, Rachel (Author) / Harkins, Kelly (Author) / Stone, Anne (Author) / Cartwright, Reed (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-06-11
132054-Thumbnail Image.png
Description
Callithrix penicillata, also known as the Black-tufted marmoset primarily lives in the Brazilian highlands and has had little research conducted on it. For this project I performed a genome curation on the newly assembled genome of this species. The scaffolds obtained by the Dovetail Genomics reads were organized and labeled

Callithrix penicillata, also known as the Black-tufted marmoset primarily lives in the Brazilian highlands and has had little research conducted on it. For this project I performed a genome curation on the newly assembled genome of this species. The scaffolds obtained by the Dovetail Genomics reads were organized and labeled into chromosomes using the 2014 Callithrix jacchus genome as a reference. Then, using that same genome as a reference, 13 of the chromosomes were reverse complimented to be continuous with the 2014 Callithrix jacchus genome. The N50 statistics of the assembly were calculated and found to be 124 Mb. Quality scores were run for the final genome using referee and visualized with a bar plot, with 99% of sites scoring above 0. Heterozygosity was also calculated and found to be 0.3%. Finally, the final version of the genome was visually compared to the 2017 Callithrix jacchus genome and the GRCh38 human genome. This genome was submitted to the NCBIs database to await further approval.
ContributorsJohnson, Joelle Genevieve (Author) / Cartwright, Reed (Thesis director) / Stone, Anne (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
133795-Thumbnail Image.png
Description
Since its discovery in 1524, many people have characterized the vermiform appendix. Charles Darwin considered the human appendix to be a vestige and a useless structure. Others at the time opposed this hypothesis. However, Darwin's hypothesis became prevalent one until recently when there became a renewed interest in the appendix

Since its discovery in 1524, many people have characterized the vermiform appendix. Charles Darwin considered the human appendix to be a vestige and a useless structure. Others at the time opposed this hypothesis. However, Darwin's hypothesis became prevalent one until recently when there became a renewed interest in the appendix because of advancements in microscopes, knowledge of the immune system, and phylogenetics. In this review, I will argue that the vermiform appendix, although still not completely understood, has important functions. First, I will give the anatomy of the appendix. I will discuss the comparative anatomy between different animals and also primates. I will address the effects of appendicitis and appendectomy. I will give background on vestigial structures and will discuss if the appendix is a vestige. Following, I will review the evolution of the appendix. Finally, I will argue that the function of the appendix is as an immune organ, including discussion of gut-associated lymphoid tissue (GALT), development of lymphoid follicles in GALT and their comparison within different organs, Immunoglobulin A (IgA) function in the gut, biofilms as evidence that the appendix is a safe-house for beneficial bacteria, re-inoculation of the bowel, and protection against recurring infection. I will conclude with future studies that should be conducted to further our understanding of the vermiform appendix.
ContributorsPrestwich, Shelby Elizabeth (Author) / Cartwright, Reed (Thesis director) / Lynch, John (Committee member) / Furstenau, Tara (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05