Matching Items (19)
Filtering by

Clear all filters

148155-Thumbnail Image.png
Description

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of the hybrid system increases initially then decreases because the decreasing flow rate of air begins to outweigh the increasing hydrogen concentration. This occurs at an equivalence ratio of 2 for CH4. The thermodynamic cycle is analyzed using a temperature entropy diagram and a pressure volume diagram. These thermodynamic diagrams show as equivalence ratio increases, the power generated by the turbine in the hybrid setup decreases. Thermodynamic analysis was performed to verify that energy is conserved and the total chemical energy going into the system was equal to the heat rejected by the system plus the power generated by the system. Of the six fuels, the hybrid system performs best with H2 as the fuel. The electrical efficiency with H2 is predicted to be 27%, CH4 is 24%, C3H8 is 22%, JP-4 is 21%, JP-5 is 20%, and JP-10(L) is 20%. When H2 fuel is used, the overall integrated system is predicted to be 24.5% more efficient than the standard gas turbine system. The integrated system is predicted to be 23.0% more efficient with CH4, 21.9% more efficient with C3H8, 22.7% more efficient with JP-4, 21.3% more efficient with JP-5, and 20.8% more efficient with JP-10(L). The sensitivity of the model is investigated using various fuel utilizations. When CH4 fuel is used, the integrated system is predicted to be 22.7% more efficient with a fuel utilization efficiency of 90% compared to that of 30%.

ContributorsRupiper, Lauren Nicole (Author) / Milcarek, Ryan (Thesis director) / Wang, Liping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148412-Thumbnail Image.png
Description

This work summarizes the development of a dynamic measurement platform in a cryostat to measure sample temperature response to space-like conditions and the creation a MATLAB theoretical model to predict sample temperature responses in the platform itself. An interesting variable-emittance sample called a Fabry-Perot emitter was studied for its thermal

This work summarizes the development of a dynamic measurement platform in a cryostat to measure sample temperature response to space-like conditions and the creation a MATLAB theoretical model to predict sample temperature responses in the platform itself. An interesting variable-emittance sample called a Fabry-Perot emitter was studied for its thermal homeostasis behavior using the two developments. Using the measurement platform, it was shown that there was no thermal homeostatic behavior demonstrated by the sample at steady state temperatures. Theoretical calculations show other ways to demonstrate the cooling homeostasis behavior through time-varying heat inputs. Factors within the system such as heat loss and thermal mass contributed to an inhibited sample performance in the platform. Future work will have to be conducted, not only to verify the findings of the initial experiments but also to improve the measurement platform and the theoretical model.

ContributorsBoman, Neal D (Author) / Wang, Liping (Thesis director) / Taylor, Syndey (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148418-Thumbnail Image.png
Description

A thermochromic mid-infrared filter is designed, where a spectrally-selective transmittance peak exists while vanadium dioxide layers are below their transition temperature but broad opaqueness is observed below the transition temperature. This filter takes advantage of interference effects between a silicon spacer and insulating vanadium dioxide to create the transmittance peak

A thermochromic mid-infrared filter is designed, where a spectrally-selective transmittance peak exists while vanadium dioxide layers are below their transition temperature but broad opaqueness is observed below the transition temperature. This filter takes advantage of interference effects between a silicon spacer and insulating vanadium dioxide to create the transmittance peak and the drastic optical property change between insulating and metallic vanadium dioxide. The theoretical performance of the filter in energy dissipation and thermal camouflaging applications is analyzed and can be optimized by tuning the thicknesses of the thin-film layers.

ContributorsChao, Jeremy (Author) / Wang, Liping (Thesis director) / Taylor, Sydney (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Plasmodium falciparum and Plasmodium vivax are two of the main propagators of human malaria. Both species contain the protein, Apical Membrane Antigen 1 (AMA-1), which is involved in the process of host cell invasion. However, the high degree of polymorphisms and antigenic diversity in this protein has prevented consistent single-vaccine

Plasmodium falciparum and Plasmodium vivax are two of the main propagators of human malaria. Both species contain the protein, Apical Membrane Antigen 1 (AMA-1), which is involved in the process of host cell invasion. However, the high degree of polymorphisms and antigenic diversity in this protein has prevented consistent single-vaccine success. Furthermore, the three main domains within AMA-1 (Domains I, II, and III), possess variable polymorphic features and levels of diversity. Overcoming this issue may require an understanding of the type of selection acting on AMA-1 in P. falciparum and P. vivax. Therefore, this investigation aimed to determine the type of selection acting on the whole AMA-1 coding sequence and in each domain for P. falciparum and P. vivax. Population structure was investigated on a global scale and among individual countries. AMA-1 sequences were obtained from the National Center for Biotechnology. For P. falciparum, 649 complete and 382 partial sequences were obtained. For P. vivax, 395 sequences were obtained (370 partial). The AMA-1 gene in P. falciparum was found to possess high nonsynonymous polymorphisms and disproportionately low synonymous polymorphisms. Domain I was found to have the most diverse region with consistently high nonsynonymous substitutions across all countries. Large, positive, and significant Z-test scores indicated the presence of positive selection while FST and NST values showed low genetic differentiation across populations. Data trends for all analyses were relatively consistent for the global and country-based analyses. The only country to deviate was Venezuela, which was the only South American country analyzed. Network analyses did not show distinguishable groupings. For P. falciparum, it was concluded that positive diversifying selection was acting on the AMA-1 gene, particularly in Domain I. In AMA-1 of P. vivax, nonsynonymous and synonymous polymorphisms were relatively equal across all analyses. FST and NST values were high, indicating that countries were genetically distinct populations. Network analyses did not show distinguishable grouping; however, the data was limited to small sample sizes. From the data, it was concluded that AMA-1 in P. vivax was evolving neutrally, where selective pressures did not strongly encourage positive or purifying selection specifically. In addition, different AMA-1 P. vivax strains were genetically distinct and this genetic identity correlated with geographic region. Therefore, AMA-1 strains in P. falciparum and P. vivax not only evolve differently and undergo different form of selection, but they also require different vaccine development strategies. A combination of strain-specific vaccines along with preventative measures on an environmental level will likely be more effective than trying to achieve a single, comprehensive vaccine.
ContributorsEspinas, Jaye Frances Palma (Author) / Escalante, Ananias (Thesis director) / Taylor, Jay (Committee member) / Rosenberg, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
135568-Thumbnail Image.png
Description
Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated

Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated habitats. Populations in six natural ephemeral pool habitats located in two different regions of the Sonoran Desert and a transition area between the Sonoran and Chihuahuan Deserts were sampled. Sequences from Genbank were used for reference points in the determination of species as well as to further identify regional genetic distance within species. This study estimated the amount of within and between genetic distance of individuals from each region and population through the use of a neutral marker, cytochrome oxidase I (COI). We concluded that, although the method of passive dispersal may differ between the two genera, the differences do not results in different patterns of genetic distances between regions and populations. Furthermore, we only found the putative species, Triops longicaudatus "short", with enough distinct speciation. Although Triops longicaudatus "long" and Triops newberryi may be in the early stages of speciation, this study does not find enough support to conclude that they have separated.
ContributorsMurphy Jr., Patrick Joseph (Author) / Rutowski, Ronald (Thesis director) / Cartwright, Reed (Committee member) / Lessios, Nikos (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135609-Thumbnail Image.png
Description
Zeolitic Imidazolate Frameworks (ZIFs) are a promising technology for the separation of gases. ZIFs represent a type of hybrid material that is a subset of metal organic frameworks while displaying zeolite properties. ZIFs have tunable pore metrics, high thermal stability, and large surface areas giving them advantages over traditional zeolites.

Zeolitic Imidazolate Frameworks (ZIFs) are a promising technology for the separation of gases. ZIFs represent a type of hybrid material that is a subset of metal organic frameworks while displaying zeolite properties. ZIFs have tunable pore metrics, high thermal stability, and large surface areas giving them advantages over traditional zeolites. The experiment sought to determine the flux of hexane vapor through ZIF-68 with Fourier Transform Infrared Spectroscopy (FTIR) mapping. FTIR mapping was used to obtain three spectra per crystal and the concentration gradient was analyzed to determine the flux. ZIF-68 was completely stable when loaded with hexane and exposed to the atmosphere. There was no hexane diffusion out of the crystal. As a result, ZIF-68 was heated to 50°C to increase diffusion and calculate the flux. ZIF-68 adhered to Knudsen Diffusion, and the flux was calculated to be 2.00*10-5 kg mol/s*m2. The small flux occurred because almost no concentration gradient was obtained through the crystal. It was hypothesized that the resistance in the crystal was substantially lower than the resistance at the boundary layer, which would have caused a small concentration gradient. Using film mass transfer theory, the resistance inside the crystal was found to be 1200 times lower than the resistance at the boundary layer confirming the hypothesis.
ContributorsSigrist, Dallas Dale (Author) / Lin, Jerry (Thesis director) / Wang, Liping (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136967-Thumbnail Image.png
Description
The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation

The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation of a blindness allele for varying amounts of migration and selection. For populations where the initial frequency is quite low, genetic drift plays a much larger role in the fixation of blindness than populations where the initial frequency is high. In populations where the initial frequency is high, genetic drift plays almost no role in fixation. Our results suggest that migration plays a greater role in the fate of the blindness allele than selection.
ContributorsMerry, Alexandra Leigh (Author) / Cartwright, Reed (Thesis director) / Rosenberg, Michael (Committee member) / Schwartz, Rachel (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
148448-Thumbnail Image.png
Description

This paper discusses the theoretical approximation and attempted measurement of the quantum <br/>force produced by material interactions though the use of a tuning fork-based atomic force microscopy <br/>device. This device was built and orientated specifically for the measurement of the Casimir force as a <br/>function of separation distance using a

This paper discusses the theoretical approximation and attempted measurement of the quantum <br/>force produced by material interactions though the use of a tuning fork-based atomic force microscopy <br/>device. This device was built and orientated specifically for the measurement of the Casimir force as a <br/>function of separation distance using a piezo actuator for approaching and a micro tuning fork for the <br/>force measurement. This project proceeds with an experimental measurement of the ambient Casmir force <br/>through the use of a tuning fork-based AFM to determine its viability in measuring the magnitude of the <br/>force interaction between an interface material and the tuning fork probe. The ambient measurements <br/>taken during the device’s development displayed results consistent with theoretical approximations, while<br/>demonstrating the capability to perform high-precision force measurements. The experimental results<br/>concluded in a successful development of a device which has the potential to measure forces of <br/>magnitude 10−6 to 10−9 at nanometric gaps. To conclude, a path to material analysis using an approach <br/>stage, alternative methods of testing, and potential future experiments are speculated upon.

ContributorsMulkern, William Michael (Author) / Wang, Liping (Thesis director) / Kwon, Beomjin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148495-Thumbnail Image.png
Description

This paper investigates near-field thermal radiation as the primary source of heat transfer between two parallel surfaces. This radiation takes place extremely close to the heated surfaces in study so the experimental set-up to be used will be done at the nanometer scale. The primary theory being investigated is that

This paper investigates near-field thermal radiation as the primary source of heat transfer between two parallel surfaces. This radiation takes place extremely close to the heated surfaces in study so the experimental set-up to be used will be done at the nanometer scale. The primary theory being investigated is that near-field radiation generates greater heat flux that conventional radiation governed by Planck’s law with maximum for blackbodies. Working with a phase shift material such as VO2 enables a switch-like effect to occur where the total amount of heat flux fluctuates as VO2 transitions from a metal to an insulator. In this paper, the theoretical heat flux and near-field radiation effect are modeled for a set-up of VO2 and SiO2 layers separated by different vacuum gaps. In addition, a physical experimental set-up is validated for future near-field radiation experiments.

ContributorsSluder, Nicole (Author) / Wang, Liping (Thesis director) / Wang, Ropert (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136360-Thumbnail Image.png
Description
The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern

The modern web presents an opportunity for educators and researchers to create tools that are highly accessible. Because of the near-ubiquity of modern web browsers, developers who hope to create educational and analytical tools can reach a large au- dience by creating web applications. Using JavaScript, HTML, and other modern web development technologies, Genie was developed as a simulator to help educators in biology, genetics, and evolution classrooms teach their students about population genetics. Because Genie was designed for the modern web, it is highly accessible to both educators and students, who can access the web application using any modern web browser on virtually any device. Genie demonstrates the efficacy of web devel- opment technologies for demonstrating and simulating complex processes, and it will be a unique educational tool for educators who teach population genetics.
ContributorsRoos, Benjamin Hirsch (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Mayron, Liam (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05