Matching Items (116)
148162-Thumbnail Image.png
Description

Surveys have shown that several hundred billion weather forecasts are obtained by the United States public each year, and that weather news is one of the most consumed topics in the media. This indicates that the forecast provides information that is significant to the public, and that the public utilizes

Surveys have shown that several hundred billion weather forecasts are obtained by the United States public each year, and that weather news is one of the most consumed topics in the media. This indicates that the forecast provides information that is significant to the public, and that the public utilizes details associated with it to inform aspects of their life. Phoenix, Arizona is a dry, desert region that experiences a monsoon season and extreme heat. How then, does the weather forecast influence the way Phoenix residents make decisions? This paper aims to draw connections between the weather forecast, decision making, and people who live in a desert environment. To do this, a ten-minute survey was deployed through Amazon Mechanical Turk (MTurk) in which 379 respondents were targeted. The survey asks 45 multiple choice and ranking questions categorized into four sections: obtainment of the forecast, forecast variables of interest, informed decision making based on unique weather variables, and demographics. This research illuminates how residents in the Phoenix metropolitan area use the local weather forecast for decision-making on daily activities, and the main meteorological factors that drive those decisions.

ContributorsMarturano, Julia (Author) / Middel, Ariane (Thesis director) / Schneider, Florian (Committee member) / School of Geographical Sciences and Urban Planning (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
151750-Thumbnail Image.png
Description
The Cape Floral Region (CFR) in southwestern South Africa is one of the most diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of only ~90,000 km2. Many have suggested that the CFR's heterogeneous environment, with respect to landscape gradients, vegetation, rainfall, elevation,

The Cape Floral Region (CFR) in southwestern South Africa is one of the most diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of only ~90,000 km2. Many have suggested that the CFR's heterogeneous environment, with respect to landscape gradients, vegetation, rainfall, elevation, and soil fertility, is responsible for the origin and maintenance of this biodiversity. While studies have struggled to link species diversity with these features, no study has attempted to associate patterns of gene flow with environmental data to determine how CFR biodiversity evolves on different scales. Here, a molecular population genetic data is presented for a widespread CFR plant, Leucadendron salignum, across 51 locations with 5-kb of chloroplast (cpDNA) and 6-kb of unlinked nuclear (nuDNA) DNA sequences in a dataset of 305 individuals. In the cpDNA dataset, significant genetic structure was found to vary on temporal and spatial scales, separating Western and Eastern Capes - the latter of which appears to be recently derived from the former - with the highest diversity in the heart of the CFR in a central region. A second study applied a statistical model using vegetation and soil composition and found fine-scale genetic divergence is better explained by this landscape resistance model than a geographic distance model. Finally, a third analysis contrasted cpDNA and nuDNA datasets, and revealed very little geographic structure in the latter, suggesting that seed and pollen dispersal can have different evolutionary genetic histories of gene flow on even small CFR scales. These three studies together caution that different genomic markers need to be considered when modeling the geographic and temporal origin of CFR groups. From a greater perspective, the results here are consistent with the hypothesis that landscape heterogeneity is one driving influence in limiting gene flow across the CFR that can lead to species diversity on fine-scales. Nonetheless, while this pattern may be true of the widespread L. salignum, the extension of this approach is now warranted for other CFR species with varying ranges and dispersal mechanisms to determine how universal these patterns of landscape genetic diversity are.
ContributorsTassone, Erica (Author) / Verrelli, Brian C (Thesis advisor) / Dowling, Thomas (Committee member) / Cartwright, Reed (Committee member) / Rosenberg, Michael S. (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2013
136100-Thumbnail Image.png
Description
The purpose of this study is to first investigate the role of political socialization on young men and women and what motivates them to become politically active and make the ultimate decision to run for elected office. These effects include parental attitudes, exposure to political shows and news sources, participation

The purpose of this study is to first investigate the role of political socialization on young men and women and what motivates them to become politically active and make the ultimate decision to run for elected office. These effects include parental attitudes, exposure to political shows and news sources, participation in voluntary organizations, and overall community involvement. After understanding these direct and indirect effects of political socialization, I can attempt to explain the causes for the gender gap in political ambition \u2014 meaning that significantly more men are running for elected office compared to women.
ContributorsOsgood, Shannon Marie (Author) / Woodall, Gina (Thesis director) / Herrera, Richard (Committee member) / Barrett, The Honors College (Contributor) / College of Public Service and Community Solutions (Contributor) / School of Public Affairs (Contributor) / School of Politics and Global Studies (Contributor)
Created2015-05
136151-Thumbnail Image.png
Description
The Undoing Project is an ongoing educational feminist YouTube channel that serves as an introduction to feminism and feminist theory. The objective for this project is to present feminist theory and feminist ideology in an accessible and entertaining way. Through this project I sought to accomplish three goals: to challenge

The Undoing Project is an ongoing educational feminist YouTube channel that serves as an introduction to feminism and feminist theory. The objective for this project is to present feminist theory and feminist ideology in an accessible and entertaining way. Through this project I sought to accomplish three goals: to challenge the negative image of feminism, bridge the gap between the language of academia and the public, and to acknowledge and unlearn ingrained prejudices. The videos focus on theory, history, legislation, current events, and pop culture. The initial project consists of ten videos addressing the feminist wave models, a brief history of the feminist movement, and discussions of concepts like hegemony, intersectionality, masculinity, femininity, and race.
ContributorsBuchholtz, Kaylee Marie (Author) / Brian, Jennifer (Thesis director) / Grzanka, Patrick (Committee member) / Brouwer, Dan (Committee member) / Barrett, The Honors College (Contributor) / College of Public Service and Community Solutions (Contributor) / School of Social Transformation (Contributor) / Department of English (Contributor)
Created2015-05
135568-Thumbnail Image.png
Description
Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated

Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated habitats. Populations in six natural ephemeral pool habitats located in two different regions of the Sonoran Desert and a transition area between the Sonoran and Chihuahuan Deserts were sampled. Sequences from Genbank were used for reference points in the determination of species as well as to further identify regional genetic distance within species. This study estimated the amount of within and between genetic distance of individuals from each region and population through the use of a neutral marker, cytochrome oxidase I (COI). We concluded that, although the method of passive dispersal may differ between the two genera, the differences do not results in different patterns of genetic distances between regions and populations. Furthermore, we only found the putative species, Triops longicaudatus "short", with enough distinct speciation. Although Triops longicaudatus "long" and Triops newberryi may be in the early stages of speciation, this study does not find enough support to conclude that they have separated.
ContributorsMurphy Jr., Patrick Joseph (Author) / Rutowski, Ronald (Thesis director) / Cartwright, Reed (Committee member) / Lessios, Nikos (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135691-Thumbnail Image.png
Description
Previous research has found improvements in motor and cognitive measures following Assisted Cycle Therapy (AC) in adolescence with Down syndrome (DS). Our study investigated whether we would find improvements in older adults with DS on measures of leisure physical activity (GLTEQ) and sleep, which are early indicators of Alzheimer's disease

Previous research has found improvements in motor and cognitive measures following Assisted Cycle Therapy (AC) in adolescence with Down syndrome (DS). Our study investigated whether we would find improvements in older adults with DS on measures of leisure physical activity (GLTEQ) and sleep, which are early indicators of Alzheimer's disease (AD) in persons with Down syndrome. This study consisted of eight participants with Down syndrome between 31 and 51 years old that cycled for 30 minutes 3 x/week for eight weeks either at their voluntary cycling rate (VC) or approximately 35% faster with the help of a mechanical motor (AC). We predicted that, based on pilot data (Gomez, 2015), GLTEQ would either maintain or improve after AC, but would decrease after VC and would stay the same after NC. We predicted that the sleep score may improve after both VC or AC or it may improve more after VC than AC based on pilot data related to leisure activity. Our results were consistent with our prediction that GLTEQ will either maintain or improve after AC but will decrease after VC. Our results were not consistent with our prediction that sleep may improve after both VC or AC or it may improve more after VC than AC, possibly because we did not pre-screen for sleep disorders. Future research should focus on recruiting more participants and using both objective and subjective measures of sleep and physical activity to improve the efficacy of the study.
ContributorsParker, Lucas Maury (Author) / Ringenbach, Shannon (Thesis director) / Buman, Matthew (Committee member) / Holzapfel, Simon (Committee member) / School of Social and Behavioral Sciences (Contributor) / School of Nutrition and Health Promotion (Contributor) / College of Public Service and Community Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136967-Thumbnail Image.png
Description
The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation

The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation of a blindness allele for varying amounts of migration and selection. For populations where the initial frequency is quite low, genetic drift plays a much larger role in the fixation of blindness than populations where the initial frequency is high. In populations where the initial frequency is high, genetic drift plays almost no role in fixation. Our results suggest that migration plays a greater role in the fate of the blindness allele than selection.
ContributorsMerry, Alexandra Leigh (Author) / Cartwright, Reed (Thesis director) / Rosenberg, Michael (Committee member) / Schwartz, Rachel (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
141381-Thumbnail Image.png
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric).

After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2013-12-01
141382-Thumbnail Image.png
Description

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under current climate conditions and two climate change scenarios. We assessed the cooling effect of trees and cool roofs in a Phoenix residential neighborhood using the microclimate model ENVI-met. First, using xeric landscaping as a base, we created eight tree planting scenarios (from 0% canopy cover to 30% canopy cover) for the neighborhood to characterize the relationship between canopy cover and daytime cooling benefit of trees. In a second set of simulations, we ran ENVI-met for nine combined tree planting and landscaping scenarios (mesic, oasis, and xeric) with regular roofs and cool roofs under current climate conditions and two climate change projections. For each of the 54 scenarios, we compared average neighborhood mid-afternoon air temperatures and assessed the benefits of each heat mitigation measure under current and projected climate conditions. Findings suggest that the relationship between percent canopy cover and air temperature reduction is linear, with 0.14 °C cooling per percent increase in tree cover for the neighborhood under investigation. An increase in tree canopy cover from the current 10% to a targeted 25% resulted in an average daytime cooling benefit of up to 2.0 °C in residential neighborhoods at the local scale. Cool roofs reduced neighborhood air temperatures by 0.3 °C when implemented on residential homes. The results from this city-specific mitigation project will inform messaging campaigns aimed at engaging the city decision makers, industry, and the public in the green building and urban forestry initiatives.

ContributorsMiddel, Ariane (Author) / Chhetri, Nalini (Author) / Quay, Raymond (Author)
Created2015
141393-Thumbnail Image.png
Description

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling during hot, dry summer months. Tradeoffs were characterized under three scenarios of land use change and three climate-change assumptions. Decreasing vegetation density reduced outdoor water use but sacrificed nighttime cooling. Increasing vegetated surfaces accelerated nighttime cooling, but increased outdoor water use by ~20%. Replacing impervious surfaces with buildings achieved similar improvements in nighttime cooling with minimal increases in outdoor water use; it was the most water-efficient cooling strategy. The fact that nighttime cooling rates and outdoor water use were more sensitive to land use scenarios than climate-change simulations suggested that cities can adapt to a warmer climate by manipulating land use.

ContributorsGober, Patricia (Author) / Middel, Ariane (Author) / Brazel, Anthony J. (Author) / Myint, Soe (Author) / Chang, Heejun (Author) / Duh, Jiunn-Der (Author) / House-Peters, Lily (Author)
Created2013-05-16