Matching Items (53)
Filtering by

Clear all filters

127901-Thumbnail Image.png
Description

Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior

Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior information. The inversions were run for at least 5 yr in the period between 1990 and 2010. Mean fluxes for 2001–2004, seasonal cycles, interannual variability and trends are compared for the tropics and northern and southern extra-tropics, and separately for land and ocean. Some continental/basin-scale subdivisions are also considered where the atmospheric network is denser. Four-year mean fluxes are reasonably consistent across inversions at global/latitudinal scale, with a large total (land plus ocean) carbon uptake in the north (−3.4 Pg C yr-1 (±0.5 Pg C yr-1 standard deviation), with slightly more uptake over land than over ocean), a significant although more variable source over the tropics (1.6 ± 0.9 Pg C yr-1) and a compensatory sink of similar magnitude in the south (−1.4 ± 0.5 Pg C yr-1) corresponding mainly to an ocean sink. Largest differences across inversions occur in the balance between tropical land sources and southern land sinks. Interannual variability (IAV) in carbon fluxes is larger for land than ocean regions (standard deviation around 1.06 versus 0.33 Pg C yr[superscript −1] for the 1996–2007 period), with much higher consistency among the inversions for the land. While the tropical land explains most of the IAV (standard deviation ~ 0.65 Pg C yr-1), the northern and southern land also contribute (standard deviation ~ 0.39 Pg C yr-1). Most inversions tend to indicate an increase of the northern land carbon uptake from late 1990s to 2008 (around 0.1 Pg C yr-1, predominantly in North Asia. The mean seasonal cycle appears to be well constrained by the atmospheric data over the northern land (at the continental scale), but still highly dependent on the prior flux seasonality over the ocean. Finally we provide recommendations to interpret the regional fluxes, along with the uncertainty estimates.

ContributorsPeylin, P. (Author) / Law, R. M. (Author) / Gurney, Kevin (Author) / Chevallier, F. (Author) / Jacobson, A. R. (Author) / Maki, T. (Author) / Niwa, Y. (Author) / Patra, P. K. (Author) / Peters, W. (Author) / Rayner, P. J. (Author) / Rodenbeck, C. (Author) / van der Laan-Luijkx, I. T. (Author) / Zhang, X. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-10-24
128091-Thumbnail Image.png
Description

Quantifying greenhouse gas (GHG) emissions from cities is a key challenge towards effective emissions management. An inversion analysis from the INdianapolis FLUX experiment (INFLUX) project, as the first of its kind, has achieved a top-down emission estimate for a single city using CO2 data collected by the dense tower network

Quantifying greenhouse gas (GHG) emissions from cities is a key challenge towards effective emissions management. An inversion analysis from the INdianapolis FLUX experiment (INFLUX) project, as the first of its kind, has achieved a top-down emission estimate for a single city using CO2 data collected by the dense tower network deployed across the city. However, city-level emission data, used as a priori emissions, are also a key component in the atmospheric inversion framework. Currently, fine-grained emission inventories (EIs) able to resolve GHG city emissions at high spatial resolution, are only available for few major cities across the globe. Following the INFLUX inversion case with a global 1.1 km ODIAC fossil fuel CO2 emission dataset, we further improved the ODIAC emission field and examined its utility as a prior for the city scale inversion. We disaggregated the 1.1 km ODIAC non-point source emissions using geospatial datasets such as the global road network data and satellite-data driven surface imperviousness data to a 30 . 30 m resolution. We assessed the impact of the improved emission field on the inversion result, relative to priors in previous studies (Hestia and ODIAC). The posterior total emission estimate (5.1 MtC/yr) remains statistically similar to the previous estimate with ODIAC (5.3 MtC/yr). However, the distribution of the flux corrections was very close to those of Hestia inversion and the model-observation mismatches were significantly reduced both in forward and inverse runs, even without hourly temporal changes in emissions. EIs reported by cities often do not have estimates of spatial extents. Thus, emission disaggregation is a required step when verifying those reported emissions using atmospheric models. Our approach offers gridded emission estimates for global cities that could serves as a prior for inversion, even without locally reported EIs in a systematic way to support city-level Measuring, Reporting and Verification (MRV) practice implementation.

ContributorsOda, Tomohiro (Author) / Lauvaux, Thomas (Author) / Lu, Dengsheng (Author) / Rao, Preeti (Author) / Miles, Natasha L. (Author) / Richardson, Scott J. (Author) / Gurney, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-06-14
127871-Thumbnail Image.png
Description

This paper presents an analysis of methane emissions from the Los Angeles Basin at monthly timescales across a 4-year time period – from September 2011 to August 2015. Using observations acquired by a ground-based near-infrared remote sensing instrument on Mount Wilson, California, combined with atmospheric CH4–CO2 tracer–tracer correlations, we observed

This paper presents an analysis of methane emissions from the Los Angeles Basin at monthly timescales across a 4-year time period – from September 2011 to August 2015. Using observations acquired by a ground-based near-infrared remote sensing instrument on Mount Wilson, California, combined with atmospheric CH4–CO2 tracer–tracer correlations, we observed −18 to +22 % monthly variability in CH4 : CO2 from the annual mean in the Los Angeles Basin. Top-down estimates of methane emissions for the basin also exhibit significant monthly variability (−19 to +31 % from annual mean and a maximum month-to-month change of 47 %). During this period, methane emissions consistently peaked in the late summer/early fall and winter. The estimated annual methane emissions did not show a statistically significant trend over the 2011 to 2015 time period.

ContributorsWong, Clare K. (Author) / Pongetti, Thomas J. (Author) / Oda, Tom (Author) / Rao, Preeti (Author) / Gurney, Kevin (Author) / Newman, Sally (Author) / Duren, Riley M. (Author) / Miller, Charles E. (Author) / Yung, Yuk L. (Author) / Sander, Stanley P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-26
128617-Thumbnail Image.png
Description

Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and

Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America.

ContributorsWinter, David (Author) / Pacheco, Maria Andreina (Author) / Vallejo, Andres F. (Author) / Schwartz, Rachel (Author) / Arevalo-Herrera, Myriam (Author) / Herrera, Socrates (Author) / Cartwright, Reed (Author) / Escalante, Ananias (Author) / Biodesign Institute (Contributor)
Created2015-12-28
128470-Thumbnail Image.png
Description

In this study, we present a novel methodology to infer indel parameters from multiple sequence alignments (MSAs) based on simulations. Our algorithm searches for the set of evolutionary parameters describing indel dynamics which best fits a given input MSA. In each step of the search, we use parametric bootstraps and

In this study, we present a novel methodology to infer indel parameters from multiple sequence alignments (MSAs) based on simulations. Our algorithm searches for the set of evolutionary parameters describing indel dynamics which best fits a given input MSA. In each step of the search, we use parametric bootstraps and the Mahalanobis distance to estimate how well a proposed set of parameters fits input data. Using simulations, we demonstrate that our methodology can accurately infer the indel parameters for a large variety of plausible settings. Moreover, using our methodology, we show that indel parameters substantially vary between three genomic data sets: Mammals, bacteria, and retroviruses. Finally, we demonstrate how our methodology can be used to simulate MSAs based on indel parameters inferred from real data sets.

ContributorsLevy Karin, Eli (Author) / Rabin, Avigayel (Author) / Ashkenazy, Haim (Author) / Shkedy, Dafna (Author) / Avram, Oren (Author) / Cartwright, Reed (Author) / Pupko, Tal (Author) / Biodesign Institute (Contributor)
Created2015-11-03
128447-Thumbnail Image.png
Description

Mathematical models of infectious diseases are a valuable tool in understanding the mechanisms and patterns of disease transmission. It is, however, a difficult subject to teach, requiring both mathematical expertise and extensive subject-matter knowledge of a variety of disease systems. In this article, we explore several uses of zombie epidemics

Mathematical models of infectious diseases are a valuable tool in understanding the mechanisms and patterns of disease transmission. It is, however, a difficult subject to teach, requiring both mathematical expertise and extensive subject-matter knowledge of a variety of disease systems. In this article, we explore several uses of zombie epidemics to make mathematical modeling and infectious disease epidemiology more accessible to public health professionals, students, and the general public. We further introduce a web-based simulation, White Zed (http://cartwrig.ht/apps/whitezed/), that can be deployed in classrooms to allow students to explore models before implementing them. In our experience, zombie epidemics are familiar, approachable, flexible, and an ideal way to introduce basic concepts of infectious disease epidemiology.

ContributorsLofgren, Eric T. (Author) / Collins, Kristy M. (Author) / Smith, Tara C. (Author) / Cartwright, Reed (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03
129687-Thumbnail Image.png
Description

Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May-15 June 2010, in Pasadena, CA,

Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May-15 June 2010, in Pasadena, CA, to deduce the diurnally varying anthropogenic component of observed CO2 in the megacity of Los Angeles (LA). This affordable and simple technique, validated by carbon isotope observations and WRF-STILT (Weather Research and Forecasting model - Stochastic Time-Inverted Lagrangian Transport model) predictions, is shown to robustly attribute observed CO2 variation to anthropogenic or biogenic origin over the entire diurnal cycle. During CalNex-LA, local fossil fuel combustion contributed up to similar to 50% of the observed CO2 enhancement overnight, and similar to 100% of the enhancement near midday. This suggests that sufficiently accurate total column CO2 observations recorded near midday, such as those from the GOSAT or OCO-2 satellites, can potentially be used to track anthropogenic emissions from the LA megacity.

ContributorsNewman, S. (Author) / Jeong, S. (Author) / Fischer, M.L. (Author) / Xu, X. (Author) / Haman, C.L. (Author) / Lefer, B. (Author) / Alvarez, S. (Author) / Rappenglueck, B. (Author) / Kort, E.A. (Author) / Andrews, A. E. (Author) / Peischl, J. (Author) / Gurney, Kevin (Author) / Miller, C.E. (Author) / Yung, Y.L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-04-26
128752-Thumbnail Image.png
Description

Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect

Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES). Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05). The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10-4) gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B) that was significantly enriched (P < 10-60) as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10[superscript -9]), BMI (5.4 x 10-6), and fasting plasma insulin (P < 0.001). These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits.

ContributorsWinnier, Deidre A. (Author) / Fourcaudot, Marcel (Author) / Norton, Luke (Author) / Abdul-Ghani, Muhammad A. (Author) / Hu, Shirley L. (Author) / Farook, Vidya S. (Author) / Coletta, Dawn (Author) / Kumar, Satish (Author) / Puppala, Sobha (Author) / Chittoor, Geetha (Author) / Dyer, Thomas D. (Author) / Arya, Rector (Author) / Carless, Melanie (Author) / Lehman, Donna M. (Author) / Curran, Joanne E. (Author) / Cromack, Douglas T. (Author) / Tripathy, Devjit (Author) / Blangero, John (Author) / Duggirala, Ravindranath (Author) / Goring, Harald H. H. (Author) / DeFronzo, Ralph A. (Author) / Jenkinson, Christopher P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-01
129049-Thumbnail Image.png
Description

Background: To examine the influence of ethnicity on liver transaminases among adolescents with type 2 diabetes mellitus (T2DM).

Methods: A retrospective medical chart review of 57 (30 males and 27 females) newly diagnosed patients with T2DM. Ethnicity was determined by self-report and height, weight, body mass index (BMI) and glycosylated hemoglobin (HbA1c) were

Background: To examine the influence of ethnicity on liver transaminases among adolescents with type 2 diabetes mellitus (T2DM).

Methods: A retrospective medical chart review of 57 (30 males and 27 females) newly diagnosed patients with T2DM. Ethnicity was determined by self-report and height, weight, body mass index (BMI) and glycosylated hemoglobin (HbA1c) were obtained using standard clinical procedures. Fasting levels of alanine aminotransaminase (ALT) and aspartate aminotransferase (AST) were collected prior to the initiation of any therapy.

Results: Age, gender, height, weight, BMI, and HbA1c did not differ between ethnic groups. Compared to African-Americans, Hispanics had significantly higher ALT (23.9 ± 3.4 vs. 107.8 ± 20.3, p=0.002) and AST (17.7 ± 2.5 vs. 71.1 ± 15.7, p<0.001) and were significantly more likely to have ALT values above the upper limit of normal (20% vs. 71%, p=0.005) and twice the upper limit of normal (0% vs. 39%, p=0.05) as well as AST values above the upper limit of normal (0% vs. 53%, p=0.002). No differences in ALT or AST were found between Hispanics and non-Hispanic whites or between African-Americans and non-Hispanic whites.

Conclusions: These preliminary findings suggest that Hispanic children with T2DM may be at higher risk for developing non-alcoholic fatty liver disease and indicate that a comprehensive hepatic evaluation is warranted in this population. Future studies that incorporate more precise and proximal measures of liver health are warranted in this population.

ContributorsHudson, Omar D. (Author) / Nunez, Martha (Author) / Shaibi, Gabriel (Author) / College of Health Solutions (Contributor)
Created2012-11-07
156901-Thumbnail Image.png
Description
Fossil fuel CO2 (FFCO2) emissions are recognized as the dominant greenhouse gas driving climate change (Enting et. al., 1995; Conway et al., 1994; Francey et al., 1995; Bousquet et. al., 1999). Transportation is a major component of FFCO2 emissions, especially in urban areas. An improved understanding of on-road FFCO2 emission

Fossil fuel CO2 (FFCO2) emissions are recognized as the dominant greenhouse gas driving climate change (Enting et. al., 1995; Conway et al., 1994; Francey et al., 1995; Bousquet et. al., 1999). Transportation is a major component of FFCO2 emissions, especially in urban areas. An improved understanding of on-road FFCO2 emission at high spatial resolution is essential to both carbon science and mitigation policy. Though considerable research has been accomplished within a few high-income portions of the planet such as the United States and Western Europe, little work has attempted to comprehensively quantify high-resolution on-road FFCO2 emissions globally. Key questions for such a global quantification are: (1) What are the driving factors for on-road FFCO2 emissions? (2) How robust are the relationships? and (3) How do on-road FFCO2 emissions vary with urban form at fine spatial scales?

This study used urban form/socio-economic data combined with self-reported on-road FFCO2 emissions for a sample of global cities to estimate relationships within a multivariate regression framework based on an adjusted STIRPAT model. The on-road high-resolution (whole-city) regression FFCO2 model robustness was evaluated by introducing artificial error, conducting cross-validation, and assessing relationship sensitivity under various model specifications. Results indicated that fuel economy, vehicle ownership, road density and population density were statistically significant factors that correlate with on-road FFCO2 emissions. Of these four variables, fuel economy and vehicle ownership had the most robust relationships.

A second regression model was constructed to examine the relationship between global on-road FFCO2 emissions and urban form factors (described by population

ii

density, road density, and distance to activity centers) at sub-city spatial scales (1 km2). Results showed that: 1) Road density is the most significant (p<2.66e-037) predictor of on-road FFCO2 emissions at the 1 km2 spatial scale; 2) The correlation between population density and on-road FFCO2 emissions for interstates/freeways varies little by city type. For arterials, on-road FFCO2 emissions show a stronger relationship to population density in clustered cities (slope = 0.24) than dispersed cities (slope = 0.13). FFCO2 3) The distance to activity centers has a significant positive relationship with on-road FFCO2 emission for the interstate and freeway toad types, but an insignificant relationship with the arterial road type.
ContributorsSong, Yang (Author) / Gurney, Kevin (Thesis advisor) / Kuby, Michael (Committee member) / Golub, Aaron (Committee member) / Chester, Mikhail (Committee member) / Selover, Nancy (Committee member) / Arizona State University (Publisher)
Created2018