Matching Items (71)
Description
Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA

Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA from microorganisms in aqueous environments. An off-the-shelf membrane filter disc was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. After accumulating sufficient biomass on the filter, a sequential electrochemical lysing process was performed by applying 5VDC across the filter. This device was further evaluated by delivering several samples of differing concentrations of cyanobacterium Synechocystis then quantifying the DNA using real-time PCR. Lastly, an environmental sample was run through the device and the amount of photosynthetic microorganisms present in the water was determined. The major breakthroughs in this design are low energy demand, cheap materials, simple design, straightforward fabrication, and robust performance, together enabling wide-utility of similar chip-based devices for field-deployable operations in environmental micro-biotechnology.
ContributorsLecluse, Aurelie (Author) / Meldrum, Deirdre (Thesis advisor) / Chao, Joseph (Thesis advisor) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2011
147902-Thumbnail Image.png
Description

Hispanic youth have the highest risk for obesity, making this population a key priority for early childhood interventions to prevent the development of adult obesity and its consequences. Involving parents in these interventions is essential to support positive long-term physical activity and nutrition habits. Interventions in the past have engaged

Hispanic youth have the highest risk for obesity, making this population a key priority for early childhood interventions to prevent the development of adult obesity and its consequences. Involving parents in these interventions is essential to support positive long-term physical activity and nutrition habits. Interventions in the past have engaged parents by providing information about nutrition and fruit and vegetable intake through written materials or text such as newsletters and text messages. The Sustainability via Active Garden Education (SAGE) intervention used gardening and interactive activities to teach preschool children ages 3-5 about healthy eating and physical activity. It aimed to increase physical activity and fruit and vegetable intake in preschool children as well as improve related parenting practices. The intervention utilized newsletters to engage parents by promoting opportunities to increase physical activity and fruit and vegetable intake for their children at home. The newsletters also encouraged parents to discuss what was learned during the SAGE lessons with their children. The purpose of this paper is to describe the content of the newsletters and determine the parent perception of the newsletters through parent survey responses. This can help inform future childhood obesity interventions and parent engagement.

ContributorsVi, Vinny (Author) / Lee, Rebecca (Thesis director) / Martinelli, Sarah (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system

Single cell phenotypic heterogeneity studies reveal more information about the pathogenesis process than conventional bulk methods. Furthermore, investigation of the individual cellular response mechanism during rapid environmental changes can only be achieved at single cell level. By enabling the study of cellular morphology, a single cell three-dimensional (3D) imaging system can be used to diagnose fatal diseases, such as cancer, at an early stage. One proven method, CellCT, accomplishes 3D imaging by rotating a single cell around a fixed axis. However, some existing cell rotating mechanisms require either intricate microfabrication, and some fail to provide a suitable environment for living cells. This thesis develops a microvorterx chamber that allows living cells to be rotated by hydrodynamic alone while facilitating imaging access. In this thesis work, 1) the new chamber design was developed through numerical simulation. Simulations revealed that in order to form a microvortex in the side chamber, the ratio of the chamber opening to the channel width must be smaller than one. After comparing different chamber designs, the trapezoidal side chamber was selected because it demonstrated controllable circulation and met the imaging requirements. Microvortex properties were not sensitive to the chambers with interface angles ranging from 0.32 to 0.64. A similar trend was observed when chamber heights were larger than chamber opening. 2) Micro-particle image velocimetry was used to characterize microvortices and validate simulation results. Agreement between experimentation and simulation confirmed that numerical simulation was an effective method for chamber design. 3) Finally, cell rotation experiments were performed in the trapezoidal side chamber. The experimental results demonstrated cell rotational rates ranging from 12 to 29 rpm for regular cells. With a volumetric flow rate of 0.5 µL/s, an irregular cell rotated at a mean rate of 97 ± 3 rpm. Rotational rates can be changed by altering inlet flow rates.
ContributorsZhang, Wenjie (Author) / Frakes, David (Thesis advisor) / Meldrum, Deirdre (Thesis advisor) / Chao, Shih-hui (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2011
152297-Thumbnail Image.png
Description
This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future deployable ocean monitoring systems. T. pseudonana, which is a common

This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future deployable ocean monitoring systems. T. pseudonana, which is a common surface water microorganism, was detected in the deep ocean as confirmed by phylogenetic and microbial community functional studies. Six-fold copy number differences between 23S rRNA and 23S rDNA were observed by RT-qPCR, demonstrating the moderate functional activity of detected photosynthetic microbes in the deep ocean including T. pseudonana. Because of the ubiquity of T. pseudonana, it is a good candidate for an early warning system for ocean environmental perturbation monitoring. This early warning system will depend on identifying outlier gene expression at the single-cell level. An early warning system based on single-cell analysis is expected to detect environmental perturbations earlier than population level analysis which can only be observed after a whole community has reacted. Preliminary work using tube-based, two-step RT-qPCR revealed for the first time, gene expression heterogeneity of T. pseudonana under different nutrient conditions. Heterogeneity was revealed by different gene expression activity for individual cells under the same conditions. This single cell analysis showed a skewed, lognormal distribution and helped to find outlier cells. The results indicate that the geometric average becomes more important and representative of the whole population than the arithmetic average. This is in contrast with population level analysis which is limited to arithmetic averages only and highlights the value of single cell analysis. In order to develop a deployable sensor in the ocean, a chip level device was constructed. The chip contains surface-adhering droplets, defined by hydrophilic patterning, that serve as real-time PCR reaction chambers when they are immersed in oil. The chip had demonstrated sensitivities at the single cell level for both DNA and RNA. The successful rate of these chip-based reactions was around 85%. The sensitivity of the chip was equivalent to published microfluidic devices with complicated designs and protocols, but the production process of the chip was simple and the materials were all easily accessible in conventional environmental and/or biology laboratories. On-chip tests provided heterogeneity information about the whole population and were validated by comparing with conventional tube based methods and by p-values analysis. The power of chip-based single-cell analyses were mainly between 65-90% which were acceptable and can be further increased by higher throughput devices. With this chip and single-cell analysis approaches, a new paradigm for robust early warning systems of ocean environmental perturbation is possible.
ContributorsShi, Xu (Author) / Meldrum, Deirdre R. (Thesis advisor) / Zhang, Weiwen (Committee member) / Chao, Shih-hui (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2013
151750-Thumbnail Image.png
Description
The Cape Floral Region (CFR) in southwestern South Africa is one of the most diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of only ~90,000 km2. Many have suggested that the CFR's heterogeneous environment, with respect to landscape gradients, vegetation, rainfall, elevation,

The Cape Floral Region (CFR) in southwestern South Africa is one of the most diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of only ~90,000 km2. Many have suggested that the CFR's heterogeneous environment, with respect to landscape gradients, vegetation, rainfall, elevation, and soil fertility, is responsible for the origin and maintenance of this biodiversity. While studies have struggled to link species diversity with these features, no study has attempted to associate patterns of gene flow with environmental data to determine how CFR biodiversity evolves on different scales. Here, a molecular population genetic data is presented for a widespread CFR plant, Leucadendron salignum, across 51 locations with 5-kb of chloroplast (cpDNA) and 6-kb of unlinked nuclear (nuDNA) DNA sequences in a dataset of 305 individuals. In the cpDNA dataset, significant genetic structure was found to vary on temporal and spatial scales, separating Western and Eastern Capes - the latter of which appears to be recently derived from the former - with the highest diversity in the heart of the CFR in a central region. A second study applied a statistical model using vegetation and soil composition and found fine-scale genetic divergence is better explained by this landscape resistance model than a geographic distance model. Finally, a third analysis contrasted cpDNA and nuDNA datasets, and revealed very little geographic structure in the latter, suggesting that seed and pollen dispersal can have different evolutionary genetic histories of gene flow on even small CFR scales. These three studies together caution that different genomic markers need to be considered when modeling the geographic and temporal origin of CFR groups. From a greater perspective, the results here are consistent with the hypothesis that landscape heterogeneity is one driving influence in limiting gene flow across the CFR that can lead to species diversity on fine-scales. Nonetheless, while this pattern may be true of the widespread L. salignum, the extension of this approach is now warranted for other CFR species with varying ranges and dispersal mechanisms to determine how universal these patterns of landscape genetic diversity are.
ContributorsTassone, Erica (Author) / Verrelli, Brian C (Thesis advisor) / Dowling, Thomas (Committee member) / Cartwright, Reed (Committee member) / Rosenberg, Michael S. (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2013
Description
Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The components in the architecture make use of asynchronous communication methodologies that are facilitated by passing messages between one another. The architecture can be used to develop software that is distributed, responsive and thread-safe. The thesis also proposes a framework that has been developed to implement the ideas proposed by the architecture. The framework is used to develop software that is scalable, distributed, responsive and thread-safe. The framework currently has components to control very commonly used laboratory automation devices such as mechanical stages, cameras, and also to do common laboratory automation functionalities such as imaging.
ContributorsKuppuswamy, Venkataramanan (Author) / Meldrum, Deirdre (Thesis advisor) / Collofello, James (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Johnson, Roger (Committee member) / Arizona State University (Publisher)
Created2012
151177-Thumbnail Image.png
Description
Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of

Single cell analysis has become increasingly important in understanding disease onset, progression, treatment and prognosis, especially when applied to cancer where cellular responses are highly heterogeneous. Through the advent of single cell computerized tomography (Cell-CT), researchers and clinicians now have the ability to obtain high resolution three-dimensional (3D) reconstructions of single cells. Yet to date, no live-cell compatible version of the technology exists. In this thesis, a microfluidic chip with the ability to rotate live single cells in hydrodynamic microvortices about an axis parallel to the optical focal plane has been demonstrated. The chip utilizes a novel 3D microchamber design arranged beneath a main channel creating flow detachment into the chamber, producing recirculating flow conditions. Single cells are flowed through the main channel, held in the center of the microvortex by an optical trap, and rotated by the forces induced by the recirculating fluid flow. Computational fluid dynamics (CFD) was employed to optimize the geometry of the microchamber. Two methods for the fabrication of the 3D microchamber were devised: anisotropic etching of silicon and backside diffuser photolithography (BDPL). First, the optimization of the silicon etching conditions was demonstrated through design of experiment (DOE). In addition, a non-conventional method of soft-lithography was demonstrated which incorporates the use of two positive molds, one of the main channel and the other of the microchambers, compressed together during replication to produce a single ultra-thin (<200 µm) negative used for device assembly. Second, methods for using thick negative photoresists such as SU-8 with BDPL have been developed which include a new simple and effective method for promoting the adhesion of SU-8 to glass. An assembly method that bonds two individual ultra-thin (<100 µm) replications of the channel and the microfeatures has also been demonstrated. Finally, a pressure driven pumping system with nanoliter per minute flow rate regulation, sub-second response times, and < 3% flow variability has been designed and characterized. The fabrication and assembly of this device is inexpensive and utilizes simple variants of conventional microfluidic fabrication techniques, making it easily accessible to the single cell analysis community.
ContributorsMyers, Jakrey R (Author) / Meldrum, Deirdre (Thesis advisor) / Johnson, Roger (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2012
151156-Thumbnail Image.png
Description
Continuous underwater observation is a challenging engineering task that could be accomplished by development and deployment of a sensor array that can survive harsh underwater conditions. One approach to this challenge is a swarm of micro underwater robots, known as Sensorbots, that are equipped with biogeochemical sensors that can relay

Continuous underwater observation is a challenging engineering task that could be accomplished by development and deployment of a sensor array that can survive harsh underwater conditions. One approach to this challenge is a swarm of micro underwater robots, known as Sensorbots, that are equipped with biogeochemical sensors that can relay information among themselves in real-time. This innovative method for underwater exploration can contribute to a more comprehensive understanding of the ocean by not limiting sampling to a single point and time. In this thesis, Sensorbot Beta, a low-cost fully enclosed Sensorbot prototype for bench-top characterization and short-term field testing, is presented in a modular format that provides flexibility and the potential for rapid design. Sensorbot Beta is designed around a microcontroller driven platform comprised of commercial off-the-shelf components for all hardware to reduce cost and development time. The primary sensor incorporated into Sensorbot Beta is an in situ fluorescent pH sensor. Design considerations have been made for easy adoption of other fluorescent or phosphorescent sensors, such as dissolved oxygen or temperature. Optical components are designed in a format that enables additional sensors. A real-time data acquisition system, utilizing Bluetooth, allows for characterization of the sensor in bench top experiments. The Sensorbot Beta demonstrates rapid calibration and future work will include deployment for large scale experiments in a lake or ocean.
ContributorsJohansen, John (Civil engineer) (Author) / Meldrum, Deirdre R (Thesis advisor) / Chao, Shih-hui (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2012
135568-Thumbnail Image.png
Description
Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated

Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated habitats. Populations in six natural ephemeral pool habitats located in two different regions of the Sonoran Desert and a transition area between the Sonoran and Chihuahuan Deserts were sampled. Sequences from Genbank were used for reference points in the determination of species as well as to further identify regional genetic distance within species. This study estimated the amount of within and between genetic distance of individuals from each region and population through the use of a neutral marker, cytochrome oxidase I (COI). We concluded that, although the method of passive dispersal may differ between the two genera, the differences do not results in different patterns of genetic distances between regions and populations. Furthermore, we only found the putative species, Triops longicaudatus "short", with enough distinct speciation. Although Triops longicaudatus "long" and Triops newberryi may be in the early stages of speciation, this study does not find enough support to conclude that they have separated.
ContributorsMurphy Jr., Patrick Joseph (Author) / Rutowski, Ronald (Thesis director) / Cartwright, Reed (Committee member) / Lessios, Nikos (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136967-Thumbnail Image.png
Description
The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation

The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation of a blindness allele for varying amounts of migration and selection. For populations where the initial frequency is quite low, genetic drift plays a much larger role in the fixation of blindness than populations where the initial frequency is high. In populations where the initial frequency is high, genetic drift plays almost no role in fixation. Our results suggest that migration plays a greater role in the fate of the blindness allele than selection.
ContributorsMerry, Alexandra Leigh (Author) / Cartwright, Reed (Thesis director) / Rosenberg, Michael (Committee member) / Schwartz, Rachel (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05