Matching Items (25)
Filtering by

Clear all filters

151750-Thumbnail Image.png
Description
The Cape Floral Region (CFR) in southwestern South Africa is one of the most diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of only ~90,000 km2. Many have suggested that the CFR's heterogeneous environment, with respect to landscape gradients, vegetation, rainfall, elevation,

The Cape Floral Region (CFR) in southwestern South Africa is one of the most diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of only ~90,000 km2. Many have suggested that the CFR's heterogeneous environment, with respect to landscape gradients, vegetation, rainfall, elevation, and soil fertility, is responsible for the origin and maintenance of this biodiversity. While studies have struggled to link species diversity with these features, no study has attempted to associate patterns of gene flow with environmental data to determine how CFR biodiversity evolves on different scales. Here, a molecular population genetic data is presented for a widespread CFR plant, Leucadendron salignum, across 51 locations with 5-kb of chloroplast (cpDNA) and 6-kb of unlinked nuclear (nuDNA) DNA sequences in a dataset of 305 individuals. In the cpDNA dataset, significant genetic structure was found to vary on temporal and spatial scales, separating Western and Eastern Capes - the latter of which appears to be recently derived from the former - with the highest diversity in the heart of the CFR in a central region. A second study applied a statistical model using vegetation and soil composition and found fine-scale genetic divergence is better explained by this landscape resistance model than a geographic distance model. Finally, a third analysis contrasted cpDNA and nuDNA datasets, and revealed very little geographic structure in the latter, suggesting that seed and pollen dispersal can have different evolutionary genetic histories of gene flow on even small CFR scales. These three studies together caution that different genomic markers need to be considered when modeling the geographic and temporal origin of CFR groups. From a greater perspective, the results here are consistent with the hypothesis that landscape heterogeneity is one driving influence in limiting gene flow across the CFR that can lead to species diversity on fine-scales. Nonetheless, while this pattern may be true of the widespread L. salignum, the extension of this approach is now warranted for other CFR species with varying ranges and dispersal mechanisms to determine how universal these patterns of landscape genetic diversity are.
ContributorsTassone, Erica (Author) / Verrelli, Brian C (Thesis advisor) / Dowling, Thomas (Committee member) / Cartwright, Reed (Committee member) / Rosenberg, Michael S. (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2013
161580-Thumbnail Image.png
Description
The splicing of precursor messenger RNAs (pre-mRNAs) plays an essential role in dictating the mature mRNA profiles of eukaryotic cells. Mis-regulation of splicing, due to mutations in pre-mRNAs or in components of the splicing machinery, is associated with many diseases. Therefore, knowledge of pre-mRNA splicing mechanisms is required to understand

The splicing of precursor messenger RNAs (pre-mRNAs) plays an essential role in dictating the mature mRNA profiles of eukaryotic cells. Mis-regulation of splicing, due to mutations in pre-mRNAs or in components of the splicing machinery, is associated with many diseases. Therefore, knowledge of pre-mRNA splicing mechanisms is required to understand gene expression regulation during states of homeostasis and disease, and for the development of therapeutic interventions.Splicing is catalyzed by the spliceosome, a dynamic and protein-rich ribozyme composed of five small nuclear ribonucleoproteins (snRNPs) and ~170 auxiliary factors. Early interactions that occur in prespliceosomal complexes formed by the 5′- and 3′-splice-site bound U1 and U2 snRNPs are responsible for committing introns for removal. However, the mechanisms underlying these early interactions remain to be fully characterized for understanding the influence of alternative splicing factors and the impact of recurrent disease-associated mutations in prespliceosomal proteins. The goal of my dissertation research was to delineate the role of the U1 small nuclear RNA (snRNA) during prespliceosome assembly. By applying a cellular minigene reporter assay and a variety of in vitro techniques including cell-free protein expression, UV-crosslinking, electrophoretic mobility shift assays, surface plasmon resonance, and RNA affinity purification, my work establishes critical roles for the U1 snRNA stem-loops 3 (SL3) and 4 (SL4) in formation of intron definition interactions during prespliceosome assembly. Previously, the SL4 of the U1 snRNA was shown to form a molecular bridge across introns by contacting the U2-specific splicing factor 3A1 (SF3A1). I identified the Ubiquitin-like domain of SF3A1 as a non-canonical RNA binding domain responsible for U1-SL4 binding. I also determined a role for the SL3 region of the U1 snRNA in splicing and characterized the spliceosomal RNA helicase UAP56 as an SL3 interacting protein. By knocking-down the SL3- and SL4-interacting proteins, I confirmed that U1 splicing activity in vivo relies on UAP56 and SF3A1 and that their functions are interdependent. These findings, in addition to the observations made using in vitro splicing assays, support a model whereby UAP56, through its interaction with U1-SL3, enhances the cross-intron interaction between U1-SL4 and SF3A1 to promote prespliceosome formation.
ContributorsMartelly, William (Author) / Sharma, Shalini (Thesis advisor) / Mangone, Marco (Thesis advisor) / Gustin, Kurt (Committee member) / Chen, Julian (Committee member) / Arizona State University (Publisher)
Created2021
168823-Thumbnail Image.png
Description
Glioblastoma (GBM), the most common and aggressive primary brain tumor affecting adults, is characterized by an aberrant yet druggable epigenetic landscape. The Histone Deacetylases (HDACs), a major family of epigenetic regulators, favor transcriptional repression by mediating chromatin compaction and are frequently overexpressed in human cancers, including GBM. Hence, over the

Glioblastoma (GBM), the most common and aggressive primary brain tumor affecting adults, is characterized by an aberrant yet druggable epigenetic landscape. The Histone Deacetylases (HDACs), a major family of epigenetic regulators, favor transcriptional repression by mediating chromatin compaction and are frequently overexpressed in human cancers, including GBM. Hence, over the last decade there has been considerable interest in using HDAC inhibitors (HDACi) for the treatment of malignant primary brain tumors. However, to date most HDACi tested in clinical trials have failed to provide significant therapeutic benefit to patients with GBM. This is because current HDACi have poor or unknown pharmacokinetic profiles, lack selectivity towards the different HDAC isoforms, and have narrow therapeutic windows. Isoform selectivity for HDACi is important given that broad inhibition of all HDACs results in widespread toxicity across different organs. Moreover, the functional roles of individual HDAC isoforms in GBM are still not well understood. Here, I demonstrate that HDAC1 expression increases with brain tumor grade and is correlated with decreased survival in GBM. I find that HDAC1 is the essential HDAC isoform in glioma stem cells and its loss is not compensated for by its paralogue HDAC2 or other members of the HDAC family. Loss of HDAC1 alone has profound effects on the glioma stem cell phenotype in a p53-dependent manner and leads to significant suppression of tumor growth in vivo. While no HDAC isoform-selective inhibitors are currently available, the second-generation HDACi quisinostat harbors high specificity for HDAC1. I show that quisinostat exhibits potent growth inhibition in multiple patient-derived glioma stem cells. Using a pharmacokinetics- and pharmacodynamics-driven approach, I demonstrate that quisinostat is a brain-penetrant molecule that reduces tumor burden in flank and orthotopic models of GBM and significantly extends survival both alone and in combination with radiotherapy. The work presented in this thesis thereby unveils the non-redundant functions of HDAC1 in therapy- resistant glioma stem cells and identifies a brain-penetrant HDACi with higher selectivity towards HDAC1 as a potent radiosensitizer in preclinical models of GBM. Together, these results provide a rationale for developing quisinostat as a potential adjuvant therapy for the treatment of GBM.
ContributorsLo Cascio, Costanza (Author) / LaBaer, Joshua (Thesis advisor) / Mehta, Shwetal (Committee member) / Mirzadeh, Zaman (Committee member) / Mangone, Marco (Committee member) / Paek, Andrew (Committee member) / Arizona State University (Publisher)
Created2022
171500-Thumbnail Image.png
Description
Advances in sequencing technology have generated an enormous amount of data over the past decade. Equally advanced computational methods are needed to conduct comparative and functional genomic studies on these datasets, in particular tools that appropriately interpret indels within an evolutionary framework. The evolutionary history of indels is complex and

Advances in sequencing technology have generated an enormous amount of data over the past decade. Equally advanced computational methods are needed to conduct comparative and functional genomic studies on these datasets, in particular tools that appropriately interpret indels within an evolutionary framework. The evolutionary history of indels is complex and often involves repetitive genomic regions, which makes identification, alignment, and annotation difficult. While previous studies have found that indel lengths in both deoxyribonucleic acid and proteins obey a power law, probabilistic models for indel evolution have rarely been explored due to their computational complexity. In my research, I first explore an application of an expectation-maximization algorithm for maximum-likelihood training of a codon substitution model. I demonstrate the training accuracy of the expectation-maximization on my substitution model. Then I apply this algorithm on a published 90 pairwise species dataset and find a negative correlation between the branch length and non-synonymous selection coefficient. Second, I develop a post-alignment fixation method to profile each indel event into three different phases according to its codon position. Because current codon-aware models can only identify the indels by placing the gaps between codons and lead to the misalignment of the sequences. I find that the mouse-rat species pair is under purifying selection by looking at the proportion difference of the indel phases. I also demonstrate the power of my sliding-window method by comparing the post-aligned and original gap positions. Third, I create an indel-phase moore machine including the indel rates of three phases, length distributions, and codon substitution models. Then I design a gillespie simulation that is capable of generating true sequence alignments. Next I develop an importance sampling method within the expectation-maximization algorithm that can successfully train the indel-phase model and infer accurate parameter estimates from alignments. Finally, I extend the indel phase analysis to the 90 pairwise species dataset across three alignment methods, including Mafft+sw method developed in chapter 3, coati-sampling methods applied in chapter 4, and coati-max method. Also I explore a non-linear relationship between the dN/dS and Zn/(Zn+Zs) ratio across 90 species pairs.
ContributorsZhu, Ziqi (Author) / Cartwright, Reed A (Thesis advisor) / Taylor, Jay (Committee member) / Wideman, Jeremy (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
171971-Thumbnail Image.png
Description
Protein-nucleic acid interactions are ubiquitous in biological systems playing a pivotal role in fundamental processes such as replication, transcription and translation. These interactions have been extensively used to develop biosensors, imaging techniques and diagnostic tools.This dissertation focuses on design of a small molecule responsive biosensor that employs transcription factor/deoxyribonucleic acid

Protein-nucleic acid interactions are ubiquitous in biological systems playing a pivotal role in fundamental processes such as replication, transcription and translation. These interactions have been extensively used to develop biosensors, imaging techniques and diagnostic tools.This dissertation focuses on design of a small molecule responsive biosensor that employs transcription factor/deoxyribonucleic acid (DNA) interactions to detect 10 different analytes including antibiotics such as tetracyclines and erythromycin. The biosensor harnesses the multi-turnover collateral cleavage activity of Cas12a to provide signal amplification in less than an hour that can be monitored using fluorescence as well as on paper based diagnostic devices. In addition, the functionality of this assay was preserved when testing tap water and wastewater spiked with doxycycline. Overall, this biosensor has potential to expand the range of small molecule detection and can be used to identify environmental contaminants. In second part of the dissertation, interactions between nonribosomal peptide synthetases (NRPS) and ribonucleic acid (RNA) were utilized for programming the synthesis of nonribosomal peptides. RNA scaffolds harboring peptide binding aptamers and interconnected using kissing loops to guide the assembly of NRPS modules modified with corresponding aptamer-binding peptides were built. A successful chimeric assembly of Ent synthetase modules was shown that was characterized by the production of Enterobactin siderophore. It was found that the programmed RNA/NRPS assembly could achieve up to 60% of the yield of wild-type biosynthetic pathway of the iron-chelator enterobactin. Finally, a cas12a-based detection method for discriminating short tandem repeats where a toehold exchange mechanism was designed to distinguish different numbers of repeats found in Huntington’s disease, Spinocerebellar ataxia type 10 and type 36. It was observed that the system discriminates well when lesser number of repeats are present and provides weaker resolution as the size of DNA strands increases. Additionally, the system can identify Kelch13 mutations such as P553L, N458Y and F446I from the wildtype sequence for Artemisinin resistance detection. This dissertation demonstrates the great utility of harnessing protein-nucleic acid interactions to construct biomolecular devices for detecting clinically relevant nucleic acid mutations, a variety of small molecule analyte and programming the production of useful molecules.
ContributorsChaudhary, Soma (Author) / Green, Alexander (Thesis advisor) / Stephanopoulos, Nicholas (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
190960-Thumbnail Image.png
Description
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, declared in March 2020 resulted in an unprecedented scientific effort that led to the deployment in less than a year of several vaccines to prevent severe disease, hospitalizations, and death from coronavirus disease 2019 (COVID-19). Most vaccine models focus on the

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, declared in March 2020 resulted in an unprecedented scientific effort that led to the deployment in less than a year of several vaccines to prevent severe disease, hospitalizations, and death from coronavirus disease 2019 (COVID-19). Most vaccine models focus on the production of neutralizing antibodies against the spike (S) to prevent infection. As the virus evolves, new variants emerge that evade neutralizing antibodies produced by natural infection and vaccination, while memory T cell responses are long-lasting and resilient to most of the changes found in variants of concern (VOC). Several lines of evidence support the study of T cell-mediated immunity in SARS-CoV-2 infections. First, T cell reactivity against SARS-CoV-2 is found in both (cluster of differentiation) CD4+ and CD8+ T cell compartments in asymptomatic, mild, and severe recovered COVID-19 patients. Second, an early and stronger CD8+ T cell response correlates with less severe COVID-19 disease [1-4]. Third, both CD4+ and CD8+ T cells that are reactive to SARS-CoV-2 viral antigens are found in healthy unexposed individuals suggesting that cross-reactive and conserved epitopes may be protective against infection. The current study is focused on the T cell-mediated response, with special attention to conserved, non-spike-cross-reactive epitopes that may be protective against SARS-CoV-2. The first chapter reviews the importance of epitope prediction in understanding the T cell-mediated responses to a pathogen. The second chapter centers on the validation of SARS-CoV-2 CD8+ T cell predicted peptides to find conserved, immunodominant, and immunoprevalent epitopes that can be incorporated into the next generation of vaccines against severe COVID-19 disease. The third chapter explores pre-existing immunity to SARS-CoV-2 in a pre-pandemic cohort and finds two highly immunogenic epitopes that are conserved among human common cold coronaviruses (HCoVs). To end, the fourth chapter explores the concept of T cell receptor (TCR) cross-reactivity by isolating SARS-CoV-2-reactive TCRs to elucidate the mechanisms of cross-reactivity to SARS-CoV-2 and other human coronaviruses (HCoVs).
ContributorsCarmona, Jacqueline (Author) / Anderson, Karen S (Thesis advisor) / Lake, Douglas (Thesis advisor) / Maley, Carlo (Committee member) / Mangone, Marco (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2023
190922-Thumbnail Image.png
Description
Mutation is the source of heritable variation of genotype and phenotype, on which selection may act. Mutation rates describe a fundamental parameter of living things, which influence the rate at which evolution may occur, from viral pathogens to human crops and even to aging cells and the emergence of cancer.

Mutation is the source of heritable variation of genotype and phenotype, on which selection may act. Mutation rates describe a fundamental parameter of living things, which influence the rate at which evolution may occur, from viral pathogens to human crops and even to aging cells and the emergence of cancer. An understanding of the variables which impact mutation rates and their estimation is necessary to place mutation rate estimates in their proper contexts. To better understand mutation rate estimates, this research investigates the impact of temperature upon transcription rate error estimates; the impact of growing cells in liquid culture vs. on agar plates; the impact of many in vitro variables upon the estimation of deoxyribonucleic acid (DNA) mutation rates from a single sample; and the mutational hazard induced by expressing clustered regularly interspaced short palindromic repeat (CRISPR) proteins in yeast. This research finds that many of the variables tested did not significantly alter the estimation of mutation rates, strengthening the claims of previous mutation rate estimates across the tree of life by diverse experimental approaches. However, it is clear that sonication is a mutagen of DNA, part of an effort which has reduced the sequencing error rate of circle-seq by over 1,000-fold. This research also demonstrates that growth in liquid culture modestly skews the mutation spectrum of MMR- Escherichia coli, though it does not significantly impact the overall mutation rate. Finally, this research demonstrates a modest mutational hazard of expressing Cas9 and similar CRISPR proteins in yeast cells at an un-targeted genomic locus, though it is possible the indel rate has been increased by an order of magnitude.
ContributorsBaehr, Stephan (Author) / Lynch, Michael (Thesis advisor) / Geiler-Samerotte, Kerry (Committee member) / Mangone, Marco (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2023
171957-Thumbnail Image.png
Description
Cocaine induces long-lasting changes in mesolimbic ‘reward’ circuits of the brain after cessation of use. These lingering changes include the neuronal plasticity that is thought to underlie the chronic relapsing nature of substance use disorders. Genes involved in neuronal plasticity also encode circular RNAs (circRNAs), which are stable, non-coding RNAs

Cocaine induces long-lasting changes in mesolimbic ‘reward’ circuits of the brain after cessation of use. These lingering changes include the neuronal plasticity that is thought to underlie the chronic relapsing nature of substance use disorders. Genes involved in neuronal plasticity also encode circular RNAs (circRNAs), which are stable, non-coding RNAs formed through the back-splicing of pre-mRNA. The Homer1 gene family, which encodes proteins associated with cocaine-induced plasticity, also encodes circHomer1. Based on preliminary evidence from shows cocaine-regulated changes in the ratio of circHomer1 and Homer1b mRNA in the nucleus accumbens (NAc), this study examined the relationship between circHomer1 and incentive motivation for cocaine by using different lengths of abstinence to vary the degree of motivation. Male and female rats were trained to self-administer cocaine (0.75 mg/kg/infusion, IV) or received a yoked saline infusion. Rats proceeded on an increasingly more difficult variable ratio schedule of lever pressing until they reached a variable ratio 5 schedule, which requires an average of 5 lever presses, and light and tone cues were delivered with the drug infusions. Rats were then tested for cocaine-seeking behavior in response to cue presentations without drug delivery either 1 or 21 days after their last self-administration session. They were sacrificed immediately after and circHomer1 and Homer1b expression was then measured from homogenate and synaptosomal fractions of NAc shell using RT-qPCR. Lever pressing during the cue reactivity test increased from 1 to 21 days of abstinence as expected. Results showed no group differences in synaptic circHomer1 expression, however, total circHomer1 expression was downregulated in 21d rats compared to controls. Lack of change in synaptic circHomer1 was likely due to trends toward different temporal changes in males versus females. Total Homer1b expression was higher in females, although there was no effect of cocaine abstinence. Further research investigating the time course of circHomer1 and Homer1b expression is warranted based on the inverse relationship between total circHomer1and cocaine-seeking behavior observed in this study.
ContributorsJohnson, Michael Christian (Author) / Neisewander, Janet L (Thesis advisor) / Perrone-Bizzozero, Nora (Thesis advisor) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
171311-Thumbnail Image.png
Description
Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as

Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as well as caregivers to maintain appropriate glucose levels. The majority of T1D patients have antibodies to one or more antigens: insulin, IA-2, GAD65, and ZnT8. Although antibodies are detectable years before symptoms occur, the initiating factors and mechanisms of progression towards β-cell destruction are still not known. The search for new autoantibodies to elucidate the autoimmune process in diabetes has been slow, with proteome level screenings on native proteins only finding a few minor antigens. Post-translational modifications (PTM)—chemical changes that occur to the protein after translation is complete—are an unexplored way a self-protein could become immunogenic. This dissertation presents the first large sale screening of autoantibodies in T1D to nitrated proteins. The Contra Capture Protein Array (CCPA) allowed for fresh expression of hundreds of proteins that were captured on a secondary slide by tag-specific ligand and subsequent modification with peroxynitrite. The IgG and IgM humoral response of 48 newly diagnosed T1D subjects and 48 age-matched controls were screened against 1632 proteins highly or specifically expressed in pancreatic cells. Top targets at 95% specificity were confirmed with the same serum samples using rapid antigenic protein in situ display enzyme-linked immunosorbent assay (RAPID ELISA) a modified sandwich ELISA employing the same cell-free expression as the CCPA. For validation, 8 IgG and 5 IgM targets were evaluated with an independent serum sample set of 94 T1D subjects and 94 controls. The two best candidates at 90% specificity were estrogen receptor 1 (ESR1) and phosphatidylinositol 4-kinase type 2 beta (PI4K2B) which had sensitivities of 22% (p=.014) and 25% (p=.045), respectively. Receiver operating characteristic (ROC) analyses found an area under curve (AUC) of 0.6 for ESR1 and 0.58 for PI4K2B. These studies demonstrate the ability and value for high-throughput autoantibody screening to modified antigens and the frequency of Type 1 diabetes.
ContributorsHesterman, Jennifer (Author) / LaBaer, Joshua (Thesis advisor) / Borges, Chad (Committee member) / Sweazea, Karen (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
168425-Thumbnail Image.png
Description
The RNA editing enzyme adenosine deaminase acting on double stranded RNA 2 (ADAR2) converts adenosine into inosine in regions of double stranded RNA. Here, it was discovered that this critical function of ADAR2 was dysfunctional in amyotrophic lateral sclerosis (ALS) mediated by the C9orf72 hexanucleotide repeat expansion, the most common

The RNA editing enzyme adenosine deaminase acting on double stranded RNA 2 (ADAR2) converts adenosine into inosine in regions of double stranded RNA. Here, it was discovered that this critical function of ADAR2 was dysfunctional in amyotrophic lateral sclerosis (ALS) mediated by the C9orf72 hexanucleotide repeat expansion, the most common genetic abnormality associated with ALS. Typically a nuclear protein, ADAR2 was localized in cytoplasmic accumulations in postmortem tissue from C9orf72 ALS patients. The mislocalization of ADAR2 was confirmed using immunostaining in a C9orf72 mouse model and motor neurons differentiated from C9orf72 patient induced pluripotent stem cells. Notably, the cytoplasmic accumulation of ADAR2 coexisted in neurons with cytoplasmic accumulations of TAR DNA binding protein 43 (TDP-43). Interestingly, ADAR2 overexpression in mammalian cell lines induced nuclear depletion and cytoplasmic accumulation of TDP-43, reflective of the pathology observed in ALS patients. The mislocalization of TDP-43 was dependent on the catalytic activity of ADAR2 and the ability of TDP-43 to bind directly to inosine containing RNA. In addition, TDP-43 nuclear export was significantly elevated in cells with increased RNA editing. Together these results describe a novel cellular mechanism by which alterations in RNA editing drive the nuclear export of TDP-43 leading to its cytoplasmic mislocalization. Considering the contribution of cytoplasmic TDP-43 to the pathogenesis of ALS, these findings represent a novel understanding of how the formation of pathogenic cytoplasmic TDP-43 accumulations may be initiated. Further research exploring this mechanism will provide insights into opportunities for novel therapeutic interventions.
ContributorsMoore, Stephen Philip (Author) / Sattler, Rita (Thesis advisor) / Zarnescu, Daniela (Committee member) / Brafman, David (Committee member) / Van Keuren-Jensen, Kendall (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2021