Matching Items (113)
Filtering by

Clear all filters

130367-Thumbnail Image.png
Description
Background
Improvements in sequencing technology now allow easy acquisition of large datasets; however, analyzing these data for phylogenetics can be challenging. We have developed a novel method to rapidly obtain homologous genomic data for phylogenetics directly from next-generation sequencing reads without the use of a reference genome. This software, called SISRS,

Background
Improvements in sequencing technology now allow easy acquisition of large datasets; however, analyzing these data for phylogenetics can be challenging. We have developed a novel method to rapidly obtain homologous genomic data for phylogenetics directly from next-generation sequencing reads without the use of a reference genome. This software, called SISRS, avoids the time consuming steps of de novo whole genome assembly, multiple genome alignment, and annotation.
Results
For simulations SISRS is able to identify large numbers of loci containing variable sites with phylogenetic signal. For genomic data from apes, SISRS identified thousands of variable sites, from which we produced an accurate phylogeny. Finally, we used SISRS to identify phylogenetic markers that we used to estimate the phylogeny of placental mammals. We recovered eight phylogenies that resolved the basal relationships among mammals using datasets with different levels of missing data. The three alternate resolutions of the basal relationships are consistent with the major hypotheses for the relationships among mammals, all of which have been supported previously by different molecular datasets.
Conclusions
SISRS has the potential to transform phylogenetic research. This method eliminates the need for expensive marker development in many studies by using whole genome shotgun sequence data directly. SISRS is open source and freely available at https://github.com/rachelss/SISRS/releases.
ContributorsSchwartz, Rachel (Author) / Harkins, Kelly (Author) / Stone, Anne (Author) / Cartwright, Reed (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-06-11
130326-Thumbnail Image.png
Description

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H[subscript 2] accumulation. As the anaerobic microbial community adapted to the gradual increase of total

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H[subscript 2] accumulation. As the anaerobic microbial community adapted to the gradual increase of total ammonia-N (NH[subscript 3]-N) from 890 ± 295 to 2040 ± 30 mg/L, the Bacterial and Archaeal communities became less diverse. Phylotypes most closely related to hydrogenotrophic Methanoculleus (36.4%) and Methanobrevibacter (11.6%), along with acetoclastic Methanosaeta (29.3%), became the most abundant Archaeal sequences during acclimation. This was accompanied by a sharp increase in the relative abundances of phylotypes most closely related to acetogens and fatty-acid producers (Clostridium, Coprococcus, and Sphaerochaeta) and syntrophic fatty-acid Bacteria (Syntrophomonas, Clostridium, Clostridiaceae species, and Cloacamonaceae species) that have metabolic capabilities for butyrate and propionate fermentation, as well as for reverse acetogenesis. Our results provide evidence countering a prevailing theory that acetoclastic methanogens are selectively inhibited when the total ammonia-N concentration is greater than ~1000 mgN/L. Instead, acetoclastic and hydrogenotrophic methanogens coexisted in the presence of total ammonia-N of ~2000 mgN/L by establishing syntrophic relationships with fatty-acid fermenters, as well as homoacetogens able to carry out forward and reverse acetogenesis.

Created2016-08-11
130342-Thumbnail Image.png
Description
Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D,

Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.
Methodology
We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.
Principal Findings
We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.
Conclusions
Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.
Created2012-01-05
130431-Thumbnail Image.png
Description
We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript

We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript 4]– removal rates. Using pyrosequencing, we elucidated how important phylotypes of each “primary” microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO[2 over 4]– reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the “primary” groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.
Created2014-07-01
132054-Thumbnail Image.png
Description
Callithrix penicillata, also known as the Black-tufted marmoset primarily lives in the Brazilian highlands and has had little research conducted on it. For this project I performed a genome curation on the newly assembled genome of this species. The scaffolds obtained by the Dovetail Genomics reads were organized and labeled

Callithrix penicillata, also known as the Black-tufted marmoset primarily lives in the Brazilian highlands and has had little research conducted on it. For this project I performed a genome curation on the newly assembled genome of this species. The scaffolds obtained by the Dovetail Genomics reads were organized and labeled into chromosomes using the 2014 Callithrix jacchus genome as a reference. Then, using that same genome as a reference, 13 of the chromosomes were reverse complimented to be continuous with the 2014 Callithrix jacchus genome. The N50 statistics of the assembly were calculated and found to be 124 Mb. Quality scores were run for the final genome using referee and visualized with a bar plot, with 99% of sites scoring above 0. Heterozygosity was also calculated and found to be 0.3%. Finally, the final version of the genome was visually compared to the 2017 Callithrix jacchus genome and the GRCh38 human genome. This genome was submitted to the NCBIs database to await further approval.
ContributorsJohnson, Joelle Genevieve (Author) / Cartwright, Reed (Thesis director) / Stone, Anne (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
133696-Thumbnail Image.png
Description
The gastrointestinal (GI) tract is home to a complex and diverse microbial ecosystem that contributes to health or disease in many aspects. While bacterial species are the majority in the GI tract, their cohabitants, fungal species, should not be forgotten. Children with autism spectrum disorder (ASD) often suffer from GI

The gastrointestinal (GI) tract is home to a complex and diverse microbial ecosystem that contributes to health or disease in many aspects. While bacterial species are the majority in the GI tract, their cohabitants, fungal species, should not be forgotten. Children with autism spectrum disorder (ASD) often suffer from GI disorders and associated symptoms, implying a role the bacterial and fungal gut microbiota play in maintaining human health. The irregularities in GI symptoms can negatively affect the overall quality of life or even worsen behavioral symptoms the children present. Even with the increase in the availability of next-generation sequencing technologies, the composition and diversities of fungal microbiotas are understudied, especially in the context of ASD. We therefore aimed to investigate the gut mycobiota of 36 neurotypical children and 38 children with ASD. We obtained stool samples from all participants, as well as autism severity and GI symptom scores to help us understand the effect the mycobiome has on these symptoms. By targeting the fungal internal transcribed spacer (ITS) and bacterial 16S rRNA V4 regions, we obtained fungal and bacterial amplicon sequences, from which we investigated the diversities, composition, and potential link between two different ecological clades. From fungal amplicon sequencing results, we observed a significant decrease in the observed fungal OTUs in children with ASD, implying a lack of potentially beneficial fungi in ASD subjects. We performed Bray-Curtis principal coordinates analysis and observed significant differences in fungal microbiota composition between the two groups. Taxonomic analysis showed higher relative abundances of Candida , Pichia, Penicillium , and Exophiala in ASD subjects, yet due to a large dispersion of data, the differences were not statistically significant. Interestingly, we observed a bimodal distribution of Candida abundances within children with ASD. Candida's relative abundance was not significantly correlated with GI scores, but children with high Candida relative abundances presented significantly higher Autism Treatment Evaluation Checklist (ATEC) scores, suggesting a role of Candida on ASD behavioral symptoms. Regarding the bacterial gut microbiota, we found marginally lower observed OTUs and significantly lower relative abundance of Prevotella in the ASD group, which was consistent with previous studies. Taken together, we demonstrated that autism is closely linked with a distinct gut mycobiota, characterized by a loss of fungal and bacterial diversity and an altered fungal and bacterial composition.
ContributorsPatel, Jigar (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Kang, Dae Wook (Committee member) / Adams, James (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134050-Thumbnail Image.png
Description
The effect of an anaerobic reductive environment produced by the oxidation of zero valent iron (ZVI) on the microbial reductive dechlorination of trichloroethylene and its applicability to in-situ bioremediation processes was investigated using microcosms and soil column studies. I learned that microbial dechlorination requires a highly reductive environment, as represented

The effect of an anaerobic reductive environment produced by the oxidation of zero valent iron (ZVI) on the microbial reductive dechlorination of trichloroethylene and its applicability to in-situ bioremediation processes was investigated using microcosms and soil column studies. I learned that microbial dechlorination requires a highly reductive environment, as represented by negative values for oxidation-reduction potential (ORP), which can be maintained through the addition of reducing agents such as ZVI, or to a lesser extent, the fermentation of added substrates such as lactate. Microcosm conditions represented distance from an in-situ treatment injection well and contained different types of iron species and dechlorinating bioaugmentation cultures. Diminishing efficacy of microbial reductive dechlorination along a gradient away from the injection zone was observed, characterized by increasing ORP and decreasing pH. Results also suggested that the use of particular biostimulation substrates is key to prioritizing the dechlorination reaction against competing microbial and abiotic processes by supplying electrons needed for microbial dechlorination.
ContributorsMouti, Aatikah (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Delgado, Anca (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
133795-Thumbnail Image.png
Description
Since its discovery in 1524, many people have characterized the vermiform appendix. Charles Darwin considered the human appendix to be a vestige and a useless structure. Others at the time opposed this hypothesis. However, Darwin's hypothesis became prevalent one until recently when there became a renewed interest in the appendix

Since its discovery in 1524, many people have characterized the vermiform appendix. Charles Darwin considered the human appendix to be a vestige and a useless structure. Others at the time opposed this hypothesis. However, Darwin's hypothesis became prevalent one until recently when there became a renewed interest in the appendix because of advancements in microscopes, knowledge of the immune system, and phylogenetics. In this review, I will argue that the vermiform appendix, although still not completely understood, has important functions. First, I will give the anatomy of the appendix. I will discuss the comparative anatomy between different animals and also primates. I will address the effects of appendicitis and appendectomy. I will give background on vestigial structures and will discuss if the appendix is a vestige. Following, I will review the evolution of the appendix. Finally, I will argue that the function of the appendix is as an immune organ, including discussion of gut-associated lymphoid tissue (GALT), development of lymphoid follicles in GALT and their comparison within different organs, Immunoglobulin A (IgA) function in the gut, biofilms as evidence that the appendix is a safe-house for beneficial bacteria, re-inoculation of the bowel, and protection against recurring infection. I will conclude with future studies that should be conducted to further our understanding of the vermiform appendix.
ContributorsPrestwich, Shelby Elizabeth (Author) / Cartwright, Reed (Thesis director) / Lynch, John (Committee member) / Furstenau, Tara (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134434-Thumbnail Image.png
Description
Hydrogen is a key indicator of microbial activity in soils/sediments and groundwater because of its role as an electron donor for reducing sulfate and nitrate and carrying out other metabolic processes. The goal of this study was to quantitatively measure the total biological hydrogen demand (TBHD) of soils and sediments

Hydrogen is a key indicator of microbial activity in soils/sediments and groundwater because of its role as an electron donor for reducing sulfate and nitrate and carrying out other metabolic processes. The goal of this study was to quantitatively measure the total biological hydrogen demand (TBHD) of soils and sediments in anaerobic environments. We define the total biological hydrogen demand as the sum of all electron acceptors that can be used by hydrogen-oxidizing microorganisms. Three sets of anaerobic microcosms were set up with different soils/sediments, named Carolina, Garden, and ASM. The microcosms included 25g of soil/sediment and 75 mL of anaerobic medium. 10 mL of hydrogen were pulse-fed for 100 days. Hydrogen consumption and methane production were tracked using gas chromatography. Chemical analysis of each soil was performed at the beginning of the experiment to determine the concentration of electron acceptors in the soils/sediments, including nitrate, sulfate, iron and bicarbonate. An analysis of the microbial community was done at t = 0 and at the end of the 100 days to examine changes in the microbial community due to the metabolic processes occurring as hydrogen was consumed. Carolina consumed 9810 43 mol of hydrogen and produced 19,572 2075 mol of methane. Garden consumed 4006 33 mol of hydrogen and produced 7,239 543 mol of methane. Lastly, ASM consumed 1557 84 mol of hydrogen and produced 1,325 715 mol of methane. I conclude that the concentration of bicarbonate initially present in the soil had the most influence over the hydrogen demand and microbial community enrichment. To improve this research, I recommend that future studies include a chemical analysis of final soil geochemistry conditions, as this will provide with a better idea of what pathway the hydrogen is taking in each soil.
ContributorsLuna Aguero, Marisol (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Delgado, Anca (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134524-Thumbnail Image.png
Description
With the rising data output and falling costs of Next Generation Sequencing technologies, research into data compression is crucial to maintaining storage efficiency and costs. High throughput sequencers such as the HiSeqX Ten can produce up to 1.8 terabases of data per run, and such large storage demands are even

With the rising data output and falling costs of Next Generation Sequencing technologies, research into data compression is crucial to maintaining storage efficiency and costs. High throughput sequencers such as the HiSeqX Ten can produce up to 1.8 terabases of data per run, and such large storage demands are even more important to consider for institutions that rely on their own servers rather than large data centers (cloud storage)1. Compression algorithms aim to reduce the amount of space taken up by large genomic datasets by encoding the most frequently occurring symbols with the shortest bit codewords and by changing the order of the data to make it easier to encode. Depending on the probability distribution of the symbols in the dataset or the structure of the data, choosing the wrong algorithm could result in a compressed file larger than the original or a poorly compressed file that results in a waste of time and space2. To test efficiency among compression algorithms for each file type, 37 open-source compression algorithms were used to compress six types of genomic datasets (FASTA, VCF, BCF, GFF, GTF, and SAM) and evaluated on compression speed, decompression speed, compression ratio, and file size using the benchmark test lzbench. Compressors that outpreformed the popular bioinformatics compressor Gzip (zlib -6) were evaluated against one another by ratio and speed for each file type and across the geometric means of all file types. Compressors that exhibited fast compression and decompression speeds were also evaluated by transmission time through variable speed internet pipes in scenarios where the file was compressed only once or compressed multiple times.
ContributorsHowell, Abigail (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Taylor, Jay (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05