Matching Items (88)
152140-Thumbnail Image.png
Description
Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering

Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering highly specific targets is the application of phage display utilizing single chain variable fragment antibodies (scFv). The aim of this research was to employ phage display to identify pathologies related to traumatic brain injury (TBI), particularly astrogliosis. A unique biopanning method against viable astrocyte cultures activated with TGF-β achieved this aim. Four scFv clones of interest showed varying relative affinities toward astrocytes. One of those four showed the ability to identify reactive astroctyes over basal astrocytes through max signal readings, while another showed a statistical significance in max signal reading toward basal astrocytes. Future studies will include further affinity characterization assays. This work contributes to the development of targeting therapeutics and diagnostics for TBI.
ContributorsMarsh, William (Author) / Stabenfeldt, Sarah (Thesis advisor) / Caplan, Michael (Committee member) / Sierks, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152004-Thumbnail Image.png
Description
To further the efforts producing energy from more renewable sources, microbial electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the oxidation of an organic substrate to the delivery of electrons to the anode. Although ARB such as Geobacter and Shewanella have been well-studied in terms of their

To further the efforts producing energy from more renewable sources, microbial electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the oxidation of an organic substrate to the delivery of electrons to the anode. Although ARB such as Geobacter and Shewanella have been well-studied in terms of their microbiology and electrochemistry, much is still unknown about the mechanism of electron transfer to the anode. To this end, this thesis seeks to elucidate the complexities of electron transfer existing in Geobacter sulfurreducens biofilms by employing Electrochemical Impedance Spectroscopy (EIS) as the tool of choice. Experiments measuring EIS resistances as a function of growth were used to uncover the potential gradients that emerge in biofilms as they grow and become thicker. While a better understanding of this model ARB is sought, electrochemical characterization of a halophile, Geoalkalibacter subterraneus (Glk. subterraneus), revealed that this organism can function as an ARB and produce seemingly high current densities while consuming different organic substrates, including acetate, butyrate, and glycerol. The importance of identifying and studying novel ARB for broader MXC applications was stressed in this thesis as a potential avenue for tackling some of human energy problems.
ContributorsAjulo, Oluyomi (Author) / Torres, Cesar (Thesis advisor) / Nielsen, David (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Popat, Sudeep (Committee member) / Arizona State University (Publisher)
Created2013
151372-Thumbnail Image.png
Description
The object of this study is to charac terize the effect of focused ultrasound stimulation (FUS) on the rat ce rvix which has been observed to speed its ripening during pregnancy. Ce rvical ripening is required for successful fetal delivery. Timed-pregnant Sprague-Dawley rats (n=36) were used. On day 14 of

The object of this study is to charac terize the effect of focused ultrasound stimulation (FUS) on the rat ce rvix which has been observed to speed its ripening during pregnancy. Ce rvical ripening is required for successful fetal delivery. Timed-pregnant Sprague-Dawley rats (n=36) were used. On day 14 of gestation, the FUS system was placed on the body surface of the rat over the cervix and ultrasound energy was applied to cervix for variable times up to 1 hour in the control group, the FUS system was placed on rats but no energy was applied. Daily measurement of cervix light-induced florescence (LIF, photon counts of collagen x-bridge fluorescence) were made on days 16 of gestation and daily until spont-aneous delivery (day22) to estimate changes in cervical ripening. We found that pulses of 680 KHz ultrasound at 25 Hertz, 1 millisecond pulse duration at 1W/cm^2 applied for as little as 30 minutes would immediately afterwards show the cervix to hav e ripened to the degree seen just before delivery on day 22. Delivery times, fetal weights and viability were unaffected in the FUS-treated animals.
ContributorsLuo, Daishen (Author) / Towe, Bruce C (Thesis advisor) / Wang, Xiao (Committee member) / Caplan, Michael (Committee member) / Arizona State University (Publisher)
Created2012
151478-Thumbnail Image.png
Description
Gene manipulation techniques, such as RNA interference (RNAi), offer a powerful method for elucidating gene function and discovery of novel therapeutic targets in a high-throughput fashion. In addition, RNAi is rapidly being adopted for treatment of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease, etc. However, a major challenge

Gene manipulation techniques, such as RNA interference (RNAi), offer a powerful method for elucidating gene function and discovery of novel therapeutic targets in a high-throughput fashion. In addition, RNAi is rapidly being adopted for treatment of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease, etc. However, a major challenge in both of the aforementioned applications is the efficient delivery of siRNA molecules, plasmids or transcription factors to primary cells such as neurons. A majority of the current non-viral techniques, including chemical transfection, bulk electroporation and sonoporation fail to deliver with adequate efficiencies and the required spatial and temporal control. In this study, a novel optically transparent biochip is presented that can (a) transfect populations of primary and secondary cells in 2D culture (b) readily scale to realize high-throughput transfections using microscale electroporation and (c) transfect targeted cells in culture with spatial and temporal control. In this study, delivery of genetic payloads of different sizes and molecular characteristics, such as GFP plasmids and siRNA molecules, to precisely targeted locations in primary hippocampal and HeLa cell cultures is demonstrated. In addition to spatio-temporally controlled transfection, the biochip also allowed simultaneous assessment of a) electrical activity of neurons, b) specific proteins using fluorescent immunohistochemistry, and c) sub-cellular structures. Functional silencing of GAPDH in HeLa cells using siRNA demonstrated a 52% reduction in the GAPDH levels. In situ assessment of actin filaments post electroporation indicated a sustained disruption in actin filaments in electroporated cells for up to two hours. Assessment of neural spike activity pre- and post-electroporation indicated a varying response to electroporation. The microarray based nature of the biochip enables multiple independent experiments on the same culture, thereby decreasing culture-to-culture variability, increasing experimental throughput and allowing cell-cell interaction studies. Further development of this technology will provide a cost-effective platform for performing high-throughput genetic screens.
ContributorsPatel, Chetan (Author) / Muthuswamy, Jitendran (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Jain, Tilak (Committee member) / Caplan, Michael (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2012
152551-Thumbnail Image.png
Description
The accurate and fast determination of carbon dioxide (CO2) levels is critical for many health and environmental applications. For example, the analysis of CO2 levels in exhaled breath allows for the evaluation of systemic metabolism, perfusion, and ventilation, and provides the doctors and patients with a non-invasive and simple method

The accurate and fast determination of carbon dioxide (CO2) levels is critical for many health and environmental applications. For example, the analysis of CO2 levels in exhaled breath allows for the evaluation of systemic metabolism, perfusion, and ventilation, and provides the doctors and patients with a non-invasive and simple method to predict the presence and severity of asthma, and Chronic Obstructive Pulmonary Disease (COPD). Similarly, the monitoring of CO2 levels in the atmosphere allows for assessment of indoor air quality (IAQ) as the indoor CO2 levels have been proved to be associated with increased prevalence of certain mucous membrane and respiratory sick building syndrome (SBS) symptoms. A pocket-sized CO2 analyzer has been developed for real-time analysis of breath CO2 and environmental CO2. This CO2 analyzer is designed to comprise two key components including a fluidic system for efficient gas sample delivery and a colorimetric detection unit integrated into the fluidic system. The CO2 levels in the gas samples are determined by a disposable colorimetric sensor chip. The sensor chip is a novel composite based sensor that has been optimized to provide fast and reversible response to CO2 over a wide concentration range, covering the needs of both environmental and health applications. The sensor is immune to the presence of various interfering gases in ambient or expired air. The performance of the sensor in real-time breath-by-breath analysis has also been validated by a commercial CO2 detector. Furthermore, a 3D model was created to simulate fluid dynamics of breath and chemical reactions for CO2 assessment to achieve overall understanding of the breath CO2 detection process and further optimization of the device.
ContributorsZhao, Di (Author) / Forzani, Erica S (Thesis advisor) / Lin, Jerry Ys (Committee member) / Torres, Cesar (Committee member) / Tsow, Tsing (Committee member) / Xian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2014
152160-Thumbnail Image.png
Description
A cerebral aneurysm is an abnormal ballooning of the blood vessel wall in the brain that occurs in approximately 6% of the general population. When a cerebral aneurysm ruptures, the subsequent damage is lethal damage in nearly 50% of cases. Over the past decade, endovascular treatment has emerged as an

A cerebral aneurysm is an abnormal ballooning of the blood vessel wall in the brain that occurs in approximately 6% of the general population. When a cerebral aneurysm ruptures, the subsequent damage is lethal damage in nearly 50% of cases. Over the past decade, endovascular treatment has emerged as an effective treatment option for cerebral aneurysms that is far less invasive than conventional surgical options. Nonetheless, the rate of successful treatment is as low as 50% for certain types of aneurysms. Treatment success has been correlated with favorable post-treatment hemodynamics. However, current understanding of the effects of endovascular treatment parameters on post-treatment hemodynamics is limited. This limitation is due in part to current challenges in in vivo flow measurement techniques. Improved understanding of post-treatment hemodynamics can lead to more effective treatments. However, the effects of treatment on hemodynamics may be patient-specific and thus, accurate tools that can predict hemodynamics on a case by case basis are also required for improving outcomes.Accordingly, the main objectives of this work were 1) to develop computational tools for predicting post-treatment hemodynamics and 2) to build a foundation of understanding on the effects of controllable treatment parameters on cerebral aneurysm hemodynamics. Experimental flow measurement techniques, using particle image velocimetry, were first developed for acquiring flow data in cerebral aneurysm models treated with an endovascular device. The experimental data were then used to guide the development of novel computational tools, which consider the physical properties, design specifications, and deployment mechanics of endovascular devices to simulate post-treatment hemodynamics. The effects of different endovascular treatment parameters on cerebral aneurysm hemodynamics were then characterized under controlled conditions. Lastly, application of the computational tools for interventional planning was demonstrated through the evaluation of two patient cases.
ContributorsBabiker, M. Haithem (Author) / Frakes, David H (Thesis advisor) / Adrian, Ronald (Committee member) / Caplan, Michael (Committee member) / Chong, Brian (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2013
152433-Thumbnail Image.png
Description
Metabolic engineering is an extremely useful tool enabling the biosynthetic production of commodity chemicals (typically derived from petroleum) from renewable resources. In this work, a pathway for the biosynthesis of styrene (a plastics monomer) has been engineered in Escherichia coli from glucose by utilizing the pathway for the naturally occurring

Metabolic engineering is an extremely useful tool enabling the biosynthetic production of commodity chemicals (typically derived from petroleum) from renewable resources. In this work, a pathway for the biosynthesis of styrene (a plastics monomer) has been engineered in Escherichia coli from glucose by utilizing the pathway for the naturally occurring amino acid phenylalanine, the precursor to styrene. Styrene production was accomplished using an E. coli phenylalanine overproducer, E. coli NST74, and over-expression of PAL2 from Arabidopsis thaliana and FDC1 from Saccharomyces cerevisiae. The styrene pathway was then extended by just one enzyme to either (S)-styrene oxide (StyAB from Pseudomonas putida S12) or (R)-1,2-phenylethanediol (NahAaAbAcAd from Pseudomonas sp. NCIB 9816-4) which are both used in pharmaceutical production. Overall, these pathways suffered from limitations due to product toxicity as well as limited precursor availability. In an effort to overcome the toxicity threshold, the styrene pathway was transferred to a yeast host with a higher toxicity limit. First, Saccharomyces cerevisiae BY4741 was engineered to overproduce phenylalanine. Next, PAL2 (the only enzyme needed to complete the styrene pathway) was then expressed in the BY4741 phenylalanine overproducer. Further strain improvements included the deletion of the phenylpyruvate decarboxylase (ARO10) and expression of a feedback-resistant choristmate mutase (ARO4K229L). These works have successfully demonstrated the possibility of utilizing microorganisms as cellular factories for the production styrene, (S)-styrene oxide, and (R)-1,2-phenylethanediol.
ContributorsMcKenna, Rebekah (Author) / Nielsen, David R (Thesis advisor) / Torres, Cesar (Committee member) / Caplan, Michael (Committee member) / Jarboe, Laura (Committee member) / Haynes, Karmella (Committee member) / Arizona State University (Publisher)
Created2014
152802-Thumbnail Image.png
Description
A new photocatalytic material was synthesized to investigate its performance for the photoreduction of carbon dioxide (CO2) in the presence of water vapor (H2O) to valuable products such as carbon monoxide (CO) and methane (CH4). The performance was studied using a gas chromatograph (GC) with a flame ionization detector (FID)

A new photocatalytic material was synthesized to investigate its performance for the photoreduction of carbon dioxide (CO2) in the presence of water vapor (H2O) to valuable products such as carbon monoxide (CO) and methane (CH4). The performance was studied using a gas chromatograph (GC) with a flame ionization detector (FID) and a thermal conductivity detector (TCD). The new photocatalytic material was an ionic liquid functionalized reduced graphite oxide (IL-RGO (high conductive surface))-TiO2 (photocatalyst) nanocomposite. Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and UV-vis absorption spectroscopy techniques were employed to characterize the new catalyst. In the series of experiments performed, the nanocomposite material was confined in a UV-quartz batch reactor, exposed to CO2 and H2O and illuminated by UV light. The primary product formed was CO with a maximum production ranging from 0.18-1.02 µmol(gcatalyst-hour)-1 for TiO2 and 0.41-1.41 µmol(gcatalyst-hour)-1 for IL-RGO-TiO2. A trace amount of CH4 was also formed with its maximum ranging from 0.009-0.01 µmol(gcatalyst-hour)-1 for TiO2 and 0.01-0.04 µmol(gcatalyst-hour)-1 for IL-RGO-TiO2. A series of background experiments were conducted and results showed that; (a) the use of a ionic liquid functionalized reduced graphite oxide -TiO2 produced more products as compared to commercial TiO2, (b) the addition of methanol as a hole scavenger boosted the production of CO but not CH4, (c) a higher and lower reduction time of IL-RGO as compared to the usual 24 hours of reduction presented basically the same production of CO and CH4, (d) the positive effect of having an ionic liquid was demonstrated by the double production of CO obtained for IL-RGO-TiO2 as compared to RGO-TiO2 and (e) a change in the amount of IL-RGO in the IL-RGO-TiO2 represented a small difference in the CO production but not in the CH4 production. This work ultimately demonstrated the huge potential of the utility of a UV-responsive ionic liquid functionalized reduced graphite oxide-TiO2 nano-composite for the reduction of CO2 in the presence of H2O for the production of fuels.
ContributorsCastañeda Flores, Alejandro (Author) / Andino, Jean M (Thesis advisor) / Forzani, Erica (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2014
152958-Thumbnail Image.png
Description
Gold nanoparticles have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs

Gold nanoparticles have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs generated using 1,4C-1,4Bis, a cationic polymer from our laboratory demonstrated significantly higher transgene expression and exhibited lower cytotoxicities when compared to similar assemblies generated using 25 kDa poly(ethylene imine) (PEI25k-GNRs), a current standard for polymer-mediated gene delivery. Additionally, sub-toxic concentrations of 1,4C-1,4Bis-GNR nanoassemblies were employed to deliver expression vectors that express shRNA ('shRNA plasmid') against firefly luciferase gene in order to knock down expression of the protein constitutively expressed in prostate cancer cells. The roles of poly(amino ether) chemistry and zeta-potential in determining transgene expression efficacies of PAE-GNR assemblies were investigated. The theranostic potential of 1,4C-1,4Bis-GNR nanoassemblies was demonstrated using live cell two-photon induced luminescence bioimaging. The PAE class of polymers was also investigated for the one pot synthesis of both gold and silver nanoparticles using a small library poly(amino ethers) derived from linear-like polyamines. Efficient nanoparticle synthesis dependent on concentration of polymers as well as polymer chemical composition is demonstrated. Additionally, the application of poly(amino ether)-gold nanoparticles for transgene delivery is demonstrated in 22Rv1 and MB49 cancer cell lines. Base polymer, 1,4C-1,4Bis and 1,4C-1,4Bis templated and modified gold nanoparticles were compared for transgene delivery efficacies. Differences in morphology and physiochemical properties were investigated as they relate to differences in transgene delivery efficacy. There were found to be minimal differences suggestion that 1,4C-1,4Bis efficacy is not lost following use for nanoparticle modification. These results indicate that poly(amino ether)-gold nanoassemblies are a promising theranostic platform for delivery of therapeutic payloads capable of simultaneous gene silencing and bioimaging.
ContributorsRamos, James (Author) / Rege, Kaushal (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Caplan, Michael (Committee member) / Vernon, Brent (Committee member) / Garcia, Antonio (Committee member) / Arizona State University (Publisher)
Created2014
151103-Thumbnail Image.png
Description
Due to depletion of oil resources, increasing fuel prices and environmental issues associated with burning of fossil fuels, extensive research has been performed in biofuel production and dramatic progress has been made. But still problems exist in economically production of biofuels. One major problem is recovery of biofuels from fermentation

Due to depletion of oil resources, increasing fuel prices and environmental issues associated with burning of fossil fuels, extensive research has been performed in biofuel production and dramatic progress has been made. But still problems exist in economically production of biofuels. One major problem is recovery of biofuels from fermentation broth with the relatively low product titer achieved. A lot of in situ product recovery techniques including liquid-liquid extraction, membrane extraction, pervaporation, gas stripping and adsorption have been developed and adsorption is shown to be the most promising one compared to other methods. Yet adsorption is not perfect due to defect in adsorbents and operation method used. So laurate adsorption using polymer resins was first investigated by doing adsorption isotherm, kinetic, breakthrough curve experiment and column adsorption of laurate from culture. The results indicate that polymer resins have good capacity for laurate with the highest capacity of 430 g/kg achieved by IRA-402 and can successfully recover laurate from culture without causing problem to Synechocystis sp.. Another research of this paper focused on a novel adsorbent: magnetic particles by doing adsorption equilibrium, kinetic and toxicity experiment. Preliminary results showed excellent performance on both adsorption capacity and kinetics. But further experiment revealed that magnetic particles were toxicity and inhibited growth of all kinds of cell tested severely, toxicity probably comes from Co (III) in magnetic particles. This problem might be solved by either using biocompatible coatings or immobilization of cells, which needs more investigation.
ContributorsWang, Yuchen (Author) / Nielsen, David Ross (Thesis advisor) / Andino, Jean (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2012