Matching Items (47)
152140-Thumbnail Image.png
Description
Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering

Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering highly specific targets is the application of phage display utilizing single chain variable fragment antibodies (scFv). The aim of this research was to employ phage display to identify pathologies related to traumatic brain injury (TBI), particularly astrogliosis. A unique biopanning method against viable astrocyte cultures activated with TGF-β achieved this aim. Four scFv clones of interest showed varying relative affinities toward astrocytes. One of those four showed the ability to identify reactive astroctyes over basal astrocytes through max signal readings, while another showed a statistical significance in max signal reading toward basal astrocytes. Future studies will include further affinity characterization assays. This work contributes to the development of targeting therapeutics and diagnostics for TBI.
ContributorsMarsh, William (Author) / Stabenfeldt, Sarah (Thesis advisor) / Caplan, Michael (Committee member) / Sierks, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151656-Thumbnail Image.png
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
ContributorsZwart, Christine M. (Author) / Frakes, David H (Thesis advisor) / Karam, Lina (Committee member) / Kodibagkar, Vikram (Committee member) / Spanias, Andreas (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2013
151372-Thumbnail Image.png
Description
The object of this study is to charac terize the effect of focused ultrasound stimulation (FUS) on the rat ce rvix which has been observed to speed its ripening during pregnancy. Ce rvical ripening is required for successful fetal delivery. Timed-pregnant Sprague-Dawley rats (n=36) were used. On day 14 of

The object of this study is to charac terize the effect of focused ultrasound stimulation (FUS) on the rat ce rvix which has been observed to speed its ripening during pregnancy. Ce rvical ripening is required for successful fetal delivery. Timed-pregnant Sprague-Dawley rats (n=36) were used. On day 14 of gestation, the FUS system was placed on the body surface of the rat over the cervix and ultrasound energy was applied to cervix for variable times up to 1 hour in the control group, the FUS system was placed on rats but no energy was applied. Daily measurement of cervix light-induced florescence (LIF, photon counts of collagen x-bridge fluorescence) were made on days 16 of gestation and daily until spont-aneous delivery (day22) to estimate changes in cervical ripening. We found that pulses of 680 KHz ultrasound at 25 Hertz, 1 millisecond pulse duration at 1W/cm^2 applied for as little as 30 minutes would immediately afterwards show the cervix to hav e ripened to the degree seen just before delivery on day 22. Delivery times, fetal weights and viability were unaffected in the FUS-treated animals.
ContributorsLuo, Daishen (Author) / Towe, Bruce C (Thesis advisor) / Wang, Xiao (Committee member) / Caplan, Michael (Committee member) / Arizona State University (Publisher)
Created2012
151478-Thumbnail Image.png
Description
Gene manipulation techniques, such as RNA interference (RNAi), offer a powerful method for elucidating gene function and discovery of novel therapeutic targets in a high-throughput fashion. In addition, RNAi is rapidly being adopted for treatment of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease, etc. However, a major challenge

Gene manipulation techniques, such as RNA interference (RNAi), offer a powerful method for elucidating gene function and discovery of novel therapeutic targets in a high-throughput fashion. In addition, RNAi is rapidly being adopted for treatment of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease, etc. However, a major challenge in both of the aforementioned applications is the efficient delivery of siRNA molecules, plasmids or transcription factors to primary cells such as neurons. A majority of the current non-viral techniques, including chemical transfection, bulk electroporation and sonoporation fail to deliver with adequate efficiencies and the required spatial and temporal control. In this study, a novel optically transparent biochip is presented that can (a) transfect populations of primary and secondary cells in 2D culture (b) readily scale to realize high-throughput transfections using microscale electroporation and (c) transfect targeted cells in culture with spatial and temporal control. In this study, delivery of genetic payloads of different sizes and molecular characteristics, such as GFP plasmids and siRNA molecules, to precisely targeted locations in primary hippocampal and HeLa cell cultures is demonstrated. In addition to spatio-temporally controlled transfection, the biochip also allowed simultaneous assessment of a) electrical activity of neurons, b) specific proteins using fluorescent immunohistochemistry, and c) sub-cellular structures. Functional silencing of GAPDH in HeLa cells using siRNA demonstrated a 52% reduction in the GAPDH levels. In situ assessment of actin filaments post electroporation indicated a sustained disruption in actin filaments in electroporated cells for up to two hours. Assessment of neural spike activity pre- and post-electroporation indicated a varying response to electroporation. The microarray based nature of the biochip enables multiple independent experiments on the same culture, thereby decreasing culture-to-culture variability, increasing experimental throughput and allowing cell-cell interaction studies. Further development of this technology will provide a cost-effective platform for performing high-throughput genetic screens.
ContributorsPatel, Chetan (Author) / Muthuswamy, Jitendran (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Jain, Tilak (Committee member) / Caplan, Michael (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2012
152160-Thumbnail Image.png
Description
A cerebral aneurysm is an abnormal ballooning of the blood vessel wall in the brain that occurs in approximately 6% of the general population. When a cerebral aneurysm ruptures, the subsequent damage is lethal damage in nearly 50% of cases. Over the past decade, endovascular treatment has emerged as an

A cerebral aneurysm is an abnormal ballooning of the blood vessel wall in the brain that occurs in approximately 6% of the general population. When a cerebral aneurysm ruptures, the subsequent damage is lethal damage in nearly 50% of cases. Over the past decade, endovascular treatment has emerged as an effective treatment option for cerebral aneurysms that is far less invasive than conventional surgical options. Nonetheless, the rate of successful treatment is as low as 50% for certain types of aneurysms. Treatment success has been correlated with favorable post-treatment hemodynamics. However, current understanding of the effects of endovascular treatment parameters on post-treatment hemodynamics is limited. This limitation is due in part to current challenges in in vivo flow measurement techniques. Improved understanding of post-treatment hemodynamics can lead to more effective treatments. However, the effects of treatment on hemodynamics may be patient-specific and thus, accurate tools that can predict hemodynamics on a case by case basis are also required for improving outcomes.Accordingly, the main objectives of this work were 1) to develop computational tools for predicting post-treatment hemodynamics and 2) to build a foundation of understanding on the effects of controllable treatment parameters on cerebral aneurysm hemodynamics. Experimental flow measurement techniques, using particle image velocimetry, were first developed for acquiring flow data in cerebral aneurysm models treated with an endovascular device. The experimental data were then used to guide the development of novel computational tools, which consider the physical properties, design specifications, and deployment mechanics of endovascular devices to simulate post-treatment hemodynamics. The effects of different endovascular treatment parameters on cerebral aneurysm hemodynamics were then characterized under controlled conditions. Lastly, application of the computational tools for interventional planning was demonstrated through the evaluation of two patient cases.
ContributorsBabiker, M. Haithem (Author) / Frakes, David H (Thesis advisor) / Adrian, Ronald (Committee member) / Caplan, Michael (Committee member) / Chong, Brian (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2013
152433-Thumbnail Image.png
Description
Metabolic engineering is an extremely useful tool enabling the biosynthetic production of commodity chemicals (typically derived from petroleum) from renewable resources. In this work, a pathway for the biosynthesis of styrene (a plastics monomer) has been engineered in Escherichia coli from glucose by utilizing the pathway for the naturally occurring

Metabolic engineering is an extremely useful tool enabling the biosynthetic production of commodity chemicals (typically derived from petroleum) from renewable resources. In this work, a pathway for the biosynthesis of styrene (a plastics monomer) has been engineered in Escherichia coli from glucose by utilizing the pathway for the naturally occurring amino acid phenylalanine, the precursor to styrene. Styrene production was accomplished using an E. coli phenylalanine overproducer, E. coli NST74, and over-expression of PAL2 from Arabidopsis thaliana and FDC1 from Saccharomyces cerevisiae. The styrene pathway was then extended by just one enzyme to either (S)-styrene oxide (StyAB from Pseudomonas putida S12) or (R)-1,2-phenylethanediol (NahAaAbAcAd from Pseudomonas sp. NCIB 9816-4) which are both used in pharmaceutical production. Overall, these pathways suffered from limitations due to product toxicity as well as limited precursor availability. In an effort to overcome the toxicity threshold, the styrene pathway was transferred to a yeast host with a higher toxicity limit. First, Saccharomyces cerevisiae BY4741 was engineered to overproduce phenylalanine. Next, PAL2 (the only enzyme needed to complete the styrene pathway) was then expressed in the BY4741 phenylalanine overproducer. Further strain improvements included the deletion of the phenylpyruvate decarboxylase (ARO10) and expression of a feedback-resistant choristmate mutase (ARO4K229L). These works have successfully demonstrated the possibility of utilizing microorganisms as cellular factories for the production styrene, (S)-styrene oxide, and (R)-1,2-phenylethanediol.
ContributorsMcKenna, Rebekah (Author) / Nielsen, David R (Thesis advisor) / Torres, Cesar (Committee member) / Caplan, Michael (Committee member) / Jarboe, Laura (Committee member) / Haynes, Karmella (Committee member) / Arizona State University (Publisher)
Created2014
152958-Thumbnail Image.png
Description
Gold nanoparticles have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs

Gold nanoparticles have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs generated using 1,4C-1,4Bis, a cationic polymer from our laboratory demonstrated significantly higher transgene expression and exhibited lower cytotoxicities when compared to similar assemblies generated using 25 kDa poly(ethylene imine) (PEI25k-GNRs), a current standard for polymer-mediated gene delivery. Additionally, sub-toxic concentrations of 1,4C-1,4Bis-GNR nanoassemblies were employed to deliver expression vectors that express shRNA ('shRNA plasmid') against firefly luciferase gene in order to knock down expression of the protein constitutively expressed in prostate cancer cells. The roles of poly(amino ether) chemistry and zeta-potential in determining transgene expression efficacies of PAE-GNR assemblies were investigated. The theranostic potential of 1,4C-1,4Bis-GNR nanoassemblies was demonstrated using live cell two-photon induced luminescence bioimaging. The PAE class of polymers was also investigated for the one pot synthesis of both gold and silver nanoparticles using a small library poly(amino ethers) derived from linear-like polyamines. Efficient nanoparticle synthesis dependent on concentration of polymers as well as polymer chemical composition is demonstrated. Additionally, the application of poly(amino ether)-gold nanoparticles for transgene delivery is demonstrated in 22Rv1 and MB49 cancer cell lines. Base polymer, 1,4C-1,4Bis and 1,4C-1,4Bis templated and modified gold nanoparticles were compared for transgene delivery efficacies. Differences in morphology and physiochemical properties were investigated as they relate to differences in transgene delivery efficacy. There were found to be minimal differences suggestion that 1,4C-1,4Bis efficacy is not lost following use for nanoparticle modification. These results indicate that poly(amino ether)-gold nanoassemblies are a promising theranostic platform for delivery of therapeutic payloads capable of simultaneous gene silencing and bioimaging.
ContributorsRamos, James (Author) / Rege, Kaushal (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Caplan, Michael (Committee member) / Vernon, Brent (Committee member) / Garcia, Antonio (Committee member) / Arizona State University (Publisher)
Created2014
150069-Thumbnail Image.png
Description
Phase contrast magnetic resonance angiography (PCMRA) is a non-invasive imaging modality that is capable of producing quantitative vascular flow velocity information. The encoding of velocity information can significantly increase the imaging acquisition and reconstruction durations associated with this technique. The purpose of this work is to provide mechanisms for reducing

Phase contrast magnetic resonance angiography (PCMRA) is a non-invasive imaging modality that is capable of producing quantitative vascular flow velocity information. The encoding of velocity information can significantly increase the imaging acquisition and reconstruction durations associated with this technique. The purpose of this work is to provide mechanisms for reducing the scan time of a 3D phase contrast exam, so that hemodynamic velocity data may be acquired robustly and with a high sensitivity. The methods developed in this work focus on the reduction of scan duration and reconstruction computation of a neurovascular PCMRA exam. The reductions in scan duration are made through a combination of advances in imaging and velocity encoding methods. The imaging improvements are explored using rapid 3D imaging techniques such as spiral projection imaging (SPI), Fermat looped orthogonally encoded trajectories (FLORET), stack of spirals and stack of cones trajectories. Scan durations are also shortened through the use and development of a novel parallel imaging technique called Pretty Easy Parallel Imaging (PEPI). Improvements in the computational efficiency of PEPI and in general MRI reconstruction are made in the area of sample density estimation and correction of 3D trajectories. A new method of velocity encoding is demonstrated to provide more efficient signal to noise ratio (SNR) gains than current state of the art methods. The proposed velocity encoding achieves improved SNR through the use of high gradient moments and by resolving phase aliasing through the use measurement geometry and non-linear constraints.
ContributorsZwart, Nicholas R (Author) / Frakes, David H (Thesis advisor) / Pipe, James G (Thesis advisor) / Bennett, Kevin M (Committee member) / Debbins, Josef P (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2011
151067-Thumbnail Image.png
Description
Aqueous solutions of temperature-responsive copolymers based on N-isopropylacrylamide (NIPAAm) hold promise for medical applications because they can be delivered as liquids and quickly form gels in the body without organic solvents or chemical reaction. However, their gelation is often followed by phase-separation and shrinking. Gel shrinking and water loss is

Aqueous solutions of temperature-responsive copolymers based on N-isopropylacrylamide (NIPAAm) hold promise for medical applications because they can be delivered as liquids and quickly form gels in the body without organic solvents or chemical reaction. However, their gelation is often followed by phase-separation and shrinking. Gel shrinking and water loss is a major limitation to using NIPAAm-based gels for nearly any biomedical application. In this work, a graft copolymer design was used to synthesize polymers which combine the convenient injectability of poly(NIPAAm) with gel water content controlled by hydrophilic side-chain grafts based on Jeffamine® M-1000 acrylamide (JAAm). The first segment of this work describes the synthesis and characterization of poly(NIPAAm-co-JAAm) copolymers which demonstrates controlled swelling that is nearly independent of LCST. The graft copolymer design was then used to produce a degradable antimicrobial-eluting gel for prevention of prosthetic joint infection. The resorbable graft copolymer gels were shown to have three unique characteristics which demonstrate their suitability for this application. First, antimicrobial release is sustained and complete within 1 week. Second, the gels behave like viscoelastic fluids, enabling complete surface coverage of an implant without disrupting fixation or movement. Finally, the gels degrade rapidly within 1-6 weeks, which may enable their use in interfaces where bone healing takes place. Graft copolymer hydrogels were also developed which undergo Michael addition in situ with poly(ethylene glycol) diacrylate to form elastic gels for endovascular embolization of saccular aneurysms. Inclusion of JAAm grafts led to weaker physical crosslinking and faster, more complete chemical crosslinking. JAAm grafts prolonged the delivery window of the system from 30 seconds to 220 seconds, provided improved gel swelling, and resulted in stronger, more elastic gels within 30 minutes after delivery.
ContributorsOverstreet, Derek (Author) / Caplan, Michael (Thesis advisor) / Massia, Stephen (Committee member) / Mclaren, Alexander (Committee member) / Vernon, Brent (Committee member) / McLemore, Ryan (Committee member) / Arizona State University (Publisher)
Created2012
151024-Thumbnail Image.png
Description
Video deinterlacing is a key technique in digital video processing, particularly with the widespread usage of LCD and plasma TVs. This thesis proposes a novel spatio-temporal, non-linear video deinterlacing technique that adaptively chooses between the results from one dimensional control grid interpolation (1DCGI), vertical temporal filter (VTF) and temporal line

Video deinterlacing is a key technique in digital video processing, particularly with the widespread usage of LCD and plasma TVs. This thesis proposes a novel spatio-temporal, non-linear video deinterlacing technique that adaptively chooses between the results from one dimensional control grid interpolation (1DCGI), vertical temporal filter (VTF) and temporal line averaging (LA). The proposed method performs better than several popular benchmarking methods in terms of both visual quality and peak signal to noise ratio (PSNR). The algorithm performs better than existing approaches like edge-based line averaging (ELA) and spatio-temporal edge-based median filtering (STELA) on fine moving edges and semi-static regions of videos, which are recognized as particularly challenging deinterlacing cases. The proposed approach also performs better than the state-of-the-art content adaptive vertical temporal filtering (CAVTF) approach. Along with the main approach several spin-off approaches are also proposed each with its own characteristics.
ContributorsVenkatesan, Ragav (Author) / Frakes, David H (Thesis advisor) / Li, Baoxin (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2012