Matching Items (125)
150311-Thumbnail Image.png
Description
HgCdTe is the dominant material currently in use for infrared (IR) focal-plane-array (FPA) technology. In this dissertation, transmission electron microscopy (TEM) was used for the characterization of epitaxial HgCdTe epilayers and HgCdTe-based devices. The microstructure of CdTe surface passivation layers deposited either by hot-wall epitaxy (HWE) or molecular beam epitaxy

HgCdTe is the dominant material currently in use for infrared (IR) focal-plane-array (FPA) technology. In this dissertation, transmission electron microscopy (TEM) was used for the characterization of epitaxial HgCdTe epilayers and HgCdTe-based devices. The microstructure of CdTe surface passivation layers deposited either by hot-wall epitaxy (HWE) or molecular beam epitaxy (MBE) on HgCdTe heterostructures was evaluated. The as-deposited CdTe passivation layers were polycrystalline and columnar. The CdTe grains were larger and more irregular when deposited by HWE, whereas those deposited by MBE were generally well-textured with mostly vertical grain boundaries. Observations and measurements using several TEM techniques showed that the CdTe/HgCdTe interface became considerably more abrupt after annealing, and the crystallinity of the CdTe layer was also improved. The microstructure and compositional profiles of CdTe(211)B/ZnTe/Si(211) heterostructures grown by MBE was investigated. Many inclined {111}-type stacking faults were present throughout the thin ZnTe layer, terminating near the point of initiation of CdTe growth. A rotation angle of about 3.5° was observed between lattice planes of the Si substrate and the final CdTe epilayer. Lattice parameter measurement and elemental profiles indicated that some local intermixing of Zn and Cd had taken place. The average widths of the ZnTe layer and the (Cd, Zn)Te transition region were found to be roughly 6.5 nm and 3.5 nm, respectively. Initial observations of CdTe(211)B/GaAs(211) heterostructures indicated much reduced defect densities near the vicinity of the substrate and within the CdTe epilayers. HgCdTe epilayers grown on CdTe(211)B/GaAs(211) composite substrate were generally of high quality, despite the presence of precipitates at the HgCdTe/CdTe interface. The microstructure of HgCdSe thin films grown by MBE on ZnTe/Si(112) and GaSb(112) substrates were investigated. The quality of the HgCdSe growth was dependent on the growth temperature and materials flux, independent of the substrate. The materials grown at 100°C were generally of high quality, while those grown at 140°C had {111}-type stacking defects and high dislocation densities. For epitaxial growth of HgCdSe on GaSb substrates, better preparation of the GaSb buffer layer will be essential in order to ensure that high-quality HgCdSe can be grown.
ContributorsZhao, Wenfeng (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha (Committee member) / Carpenter, Ray (Committee member) / Bennett, Peter (Committee member) / Treacy, Michael J. (Committee member) / Arizona State University (Publisher)
Created2011
152275-Thumbnail Image.png
Description
With increasing demand for System on Chip (SoC) and System in Package (SiP) design in computer and communication technologies, integrated inductor which is an essential passive component has been widely used in numerous integrated circuits (ICs) such as in voltage regulators and RF circuits. In this work, soft ferromagnetic core

With increasing demand for System on Chip (SoC) and System in Package (SiP) design in computer and communication technologies, integrated inductor which is an essential passive component has been widely used in numerous integrated circuits (ICs) such as in voltage regulators and RF circuits. In this work, soft ferromagnetic core material, amorphous Co-Zr-Ta-B, was incorporated into on-chip and in-package inductors in order to scale down inductors and improve inductors performance in both inductance density and quality factor. With two layers of 500 nm Co-Zr-Ta-B films a 3.5X increase in inductance and a 3.9X increase in quality factor over inductors without magnetic films were measured at frequencies as high as 1 GHz. By laminating technology, up to 9.1X increase in inductance and more than 5X increase in quality factor (Q) were obtained from stripline inductors incorporated with 50 nm by 10 laminated films with a peak Q at 300 MHz. It was also demonstrated that this peak Q can be pushed towards high frequency as far as 1GHz by a combination of patterning magnetic films into fine bars and laminations. The role of magnetic vias in magnetic flux and eddy current control was investigated by both simulation and experiment using different patterning techniques and by altering the magnetic via width. Finger-shaped magnetic vias were designed and integrated into on-chip RF inductors improving the frequency of peak quality factor from 400 MHz to 800 MHz without sacrificing inductance enhancement. Eddy current and magnetic flux density in different areas of magnetic vias were analyzed by HFSS 3D EM simulation. With optimized magnetic vias, high frequency response of up to 2 GHz was achieved. Furthermore, the effect of applied magnetic field on on-chip inductors was investigated for high power applications. It was observed that as applied magnetic field along the hard axis (HA) increases, inductance maintains similar value initially at low fields, but decreases at larger fields until the magnetic films become saturated. The high frequency quality factor showed an opposite trend which is correlated to the reduction of ferromagnetic resonant absorption in the magnetic film. In addition, experiments showed that this field-dependent inductance change varied with different patterned magnetic film structures, including bars/slots and fingers structures. Magnetic properties of Co-Zr-Ta-B films on standard organic package substrates including ABF and polyimide were also characterized. Effects of substrate roughness and stress were analyzed and simulated which provide strategies for integrating Co-Zr-Ta-B into package inductors and improving inductors performance. Stripline and spiral inductors with Co-Zr-Ta-B films were fabricated on both ABF and polyimide substrates. Maximum 90% inductance increase in hundreds MHz frequency range were achieved in stripline inductors which are suitable for power delivery applications. Spiral inductors with Co-Zr-Ta-B films showed 18% inductance increase with quality factor of 4 at frequency up to 3 GHz.
ContributorsWu, Hao (Author) / Yu, Hongbin (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Cao, Yu (Committee member) / Chickamenahalli, Shamala (Committee member) / Arizona State University (Publisher)
Created2013
152378-Thumbnail Image.png
Description
The design and development of analog/mixed-signal (AMS) integrated circuits (ICs) is becoming increasingly expensive, complex, and lengthy. Rapid prototyping and emulation of analog ICs will be significant in the design and testing of complex analog systems. A new approach, Programmable ANalog Device Array (PANDA) that maps any AMS design problem

The design and development of analog/mixed-signal (AMS) integrated circuits (ICs) is becoming increasingly expensive, complex, and lengthy. Rapid prototyping and emulation of analog ICs will be significant in the design and testing of complex analog systems. A new approach, Programmable ANalog Device Array (PANDA) that maps any AMS design problem to a transistor-level programmable hardware, is proposed. This approach enables fast system level validation and a reduction in post-Silicon bugs, minimizing design risk and cost. The unique features of the approach include 1) transistor-level programmability that emulates each transistor behavior in an analog design, achieving very fine granularity of reconfiguration; 2) programmable switches that are treated as a design component during analog transistor emulating, and optimized with the reconfiguration matrix; 3) compensation of AC performance degradation through boosting the bias current. Based on these principles, a digitally controlled PANDA platform is designed at 45nm node that can map AMS modules across 22nm to 90nm technology nodes. A systematic emulation approach to map any analog transistor to 45nm PANDA cell is proposed, which achieves transistor level matching accuracy of less than 5% for ID and less than 10% for Rout and Gm. Circuit level analog metrics of a voltage-controlled oscillator (VCO) emulated by PANDA, match to those of the original designs in 22nm and 90nm nodes with less than a 5% error. Several other 90nm and 22nm analog blocks are successfully emulated by the 45nm PANDA platform, including a folded-cascode operational amplifier and a sample-and-hold module (S/H). Further capabilities of PANDA are demonstrated by the first full-chip silicon of PANDA which is implemented on 65nm process This system consists of a 24×25 cell array, reconfigurable interconnect and configuration memory. The voltage and current reference circuits, op amps and a VCO with a phase interpolation circuit are emulated by PANDA.
ContributorsSuh, Jounghyuk (Author) / Bakkaloglu, Bertan (Thesis advisor) / Cao, Yu (Committee member) / Ozev, Sule (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152139-Thumbnail Image.png
Description
ABSTRACT Developing new non-traditional device models is gaining popularity as the silicon-based electrical device approaches its limitation when it scales down. Membrane systems, also called P systems, are a new class of biological computation model inspired by the way cells process chemical signals. Spiking Neural P systems (SNP systems), a

ABSTRACT Developing new non-traditional device models is gaining popularity as the silicon-based electrical device approaches its limitation when it scales down. Membrane systems, also called P systems, are a new class of biological computation model inspired by the way cells process chemical signals. Spiking Neural P systems (SNP systems), a certain kind of membrane systems, is inspired by the way the neurons in brain interact using electrical spikes. Compared to the traditional Boolean logic, SNP systems not only perform similar functions but also provide a more promising solution for reliable computation. Two basic neuron types, Low Pass (LP) neurons and High Pass (HP) neurons, are introduced. These two basic types of neurons are capable to build an arbitrary SNP neuron. This leads to the conclusion that these two basic neuron types are Turing complete since SNP systems has been proved Turing complete. These two basic types of neurons are further used as the elements to construct general-purpose arithmetic circuits, such as adder, subtractor and comparator. In this thesis, erroneous behaviors of neurons are discussed. Transmission error (spike loss) is proved to be equivalent to threshold error, which makes threshold error discussion more universal. To improve the reliability, a new structure called motif is proposed. Compared to Triple Modular Redundancy improvement, motif design presents its efficiency and effectiveness in both single neuron and arithmetic circuit analysis. DRAM-based CMOS circuits are used to implement the two basic types of neurons. Functionality of basic type neurons is proved using the SPICE simulations. The motif improved adder and the comparator, as compared to conventional Boolean logic design, are much more reliable with lower leakage, and smaller silicon area. This leads to the conclusion that SNP system could provide a more promising solution for reliable computation than the conventional Boolean logic.
ContributorsAn, Pei (Author) / Cao, Yu (Thesis advisor) / Barnaby, Hugh (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2013
151425-Thumbnail Image.png
Description
HgCdTe is currently the dominant material for infrared sensing and imaging, and is usually grown on lattice-matched bulk CdZnTe (CZT) substrates. There have been significant recent efforts to identify alternative substrates to CZT as well as alternative detector materials to HgCdTe. In this dissertation research, a wide range of transmission

HgCdTe is currently the dominant material for infrared sensing and imaging, and is usually grown on lattice-matched bulk CdZnTe (CZT) substrates. There have been significant recent efforts to identify alternative substrates to CZT as well as alternative detector materials to HgCdTe. In this dissertation research, a wide range of transmission electron microscopy (TEM) imaging and analytical techniques was used in the characterization of epitaxial HgCdTe and related materials and substrates for third generation IR detectors. ZnTe layers grown on Si substrates are considered to be promising candidates for lattice-matched, large-area, and low-cost composite substrates for deposition of II-VI and III-V compound semiconductors with lattice constants near 6.1 Å. After optimizing MBE growth conditions including substrate pretreatment prior to film growth, as well as nucleation and growth temperatures, thick ZnTe/Si films with high crystallinity, low defect density, and excellent surface morphology were achieved. Changes in the Zn/Te flux ratio used during growth were also investigated. Small-probe microanalysis confirmed that a small amount of As was present at the ZnTe/Si interface. A microstructural study of HgCdTe/CdTe/GaAs (211)B and CdTe/GaAs (211)B heterostructures grown using MBE was carried out. High quality MBE-grown CdTe on GaAs(211)B substrates was demonstrated to be a viable composite substrate platform for HgCdTe growth. In addition, analysis of interfacial misfit dislocations and residual strain showed that the CdTe/GaAs interface was fully relaxed. In the case of HgCdTe/CdTe/ GaAs(211)B, thin HgTe buffer layers between HgCdTe and CdTe were also investigated for improving the HgCdTe crystal quality. A set of ZnTe layers epitaxially grown on GaSb(211)B substrates using MBE was studied using high resolution X-ray diffraction (HRXRD) measurements and TEM characterization in order to investigate conditions for defect-free growth. HRXRD results gave critical thickness estimates between 350 nm and 375 nm, in good agreement with theoretical predictions. Moreover, TEM results confirmed that ZnTe layers with thicknesses of 350 nm had highly coherent interfaces and very low dislocation densities, unlike samples with the thicker ZnTe layers.
ContributorsKim, Jae Jin (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha R. (Committee member) / Alford, Terry L. (Committee member) / Crozier, Peter A. (Committee member) / Arizona State University (Publisher)
Created2012
151310-Thumbnail Image.png
Description
Characterization of standard cells is one of the crucial steps in the IC design. Scaling of CMOS technology has lead to timing un-certainties such as that of cross coupling noise due to interconnect parasitic, skew variation due to voltage jitter and proximity effect of multiple inputs switching (MIS). Due to

Characterization of standard cells is one of the crucial steps in the IC design. Scaling of CMOS technology has lead to timing un-certainties such as that of cross coupling noise due to interconnect parasitic, skew variation due to voltage jitter and proximity effect of multiple inputs switching (MIS). Due to increased operating frequency and process variation, the probability of MIS occurrence and setup / hold failure within a clock cycle is high. The delay variation due to temporal proximity of MIS is significant for multiple input gates in the standard cell library. The shortest paths are affected by MIS due to the lack of averaging effect. Thus, sensitive designs such as that of SRAM row and column decoder circuits have high probability for MIS impact. The traditional static timing analysis (STA) assumes single input switching (SIS) scenario which is not adequate enough to capture gate delay accurately, as the delay variation due to temporal proximity of the MIS is ~15%-45%. Whereas, considering all possible scenarios of MIS for characterization is computationally intensive with huge data volume. Various modeling techniques are developed for the characterization of MIS effect. Some techniques require coefficient extraction through multiple spice simulation, and do not discuss speed up approach or apply models with complicated algorithms to account for MIS effect. The STA flow accounts for process variation through uncertainty parameter to improve product yield. Some of the MIS delay variability models account for MIS variation through table look up approach, resulting in huge data volume or do not consider propagation of RAT in the design flow. Thus, there is a need for a methodology to model MIS effect with less computational resource, and integration of such effect into design flow without trading off the accuracy. A finite-point based analytical model for MIS effect is proposed for multiple input logic gates and similar approach is extended for setup/hold characterization of sequential elements. Integration of MIS variation into design flow is explored. The proposed methodology is validated using benchmark circuits at 45nm technology node under process variation. Experimental results show significant reduction in runtime and data volume with ~10% error compared to that of SPICE simulation.
ContributorsSubramaniam, Anupama R (Author) / Cao, Yu (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Roveda, Janet (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
151296-Thumbnail Image.png
Description
Scaling of the classical planar MOSFET below 20 nm gate length is facing not only technological difficulties but also limitations imposed by short channel effects, gate and junction leakage current due to quantum tunneling, high body doping induced threshold voltage variation, and carrier mobility degradation. Non-classical multiple-gate structures such as

Scaling of the classical planar MOSFET below 20 nm gate length is facing not only technological difficulties but also limitations imposed by short channel effects, gate and junction leakage current due to quantum tunneling, high body doping induced threshold voltage variation, and carrier mobility degradation. Non-classical multiple-gate structures such as double-gate (DG) FinFETs and surrounding gate field-effect-transistors (SGFETs) have good electrostatic integrity and are an alternative to planar MOSFETs for below 20 nm technology nodes. Circuit design with these devices need compact models for SPICE simulation. In this work physics based compact models for the common-gate symmetric DG-FinFET, independent-gate asymmetric DG-FinFET, and SGFET are developed. Despite the complex device structure and boundary conditions for the Poisson-Boltzmann equation, the core structure of the DG-FinFET and SGFET models, are maintained similar to the surface potential based compact models for planar MOSFETs such as SP and PSP. TCAD simulations show differences between the transient behavior and the capacitance-voltage characteristics of bulk and SOI FinFETs if the gate-voltage swing includes the accumulation region. This effect can be captured by a compact model of FinFETs only if it includes the contribution of both types of carriers in the Poisson-Boltzmann equation. An accurate implicit input voltage equation valid in all regions of operation is proposed for common-gate symmetric DG-FinFETs with intrinsic or lightly doped bodies. A closed-form algorithm is developed for solving the new input voltage equation including ambipolar effects. The algorithm is verified for both the surface potential and its derivatives and includes a previously published analytical approximation for surface potential as a special case when ambipolar effects can be neglected. The symmetric linearization method for common-gate symmetric DG-FinFETs is developed in a form free of the charge-sheet approximation present in its original formulation for bulk MOSFETs. The accuracy of the proposed technique is verified by comparison with exact results. An alternative and computationally efficient description of the boundary between the trigonometric and hyperbolic solutions of the Poisson-Boltzmann equation for the independent-gate asymmetric DG-FinFET is developed in terms of the Lambert W function. Efficient numerical algorithm is proposed for solving the input voltage equation. Analytical expressions for terminal charges of an independent-gate asymmetric DG-FinFET are derived. The new charge model is C-infinity continuous, valid for weak as well as for strong inversion condition of both the channels and does not involve the charge-sheet approximation. This is accomplished by developing the symmetric linearization method in a form that does not require identical boundary conditions at the two Si-SiO2 interfaces and allows for volume inversion in the DG-FinFET. Verification of the model is performed with both numerical computations and 2D TCAD simulations under a wide range of biasing conditions. The model is implemented in a standard circuit simulator through Verilog-A code. Simulation examples for both digital and analog circuits verify good model convergence and demonstrate the capabilities of new circuit topologies that can be implemented using independent-gate asymmetric DG-FinFETs.
ContributorsDessai, Gajanan (Author) / Gildenblat, Gennady (Committee member) / McAndrew, Colin (Committee member) / Cao, Yu (Committee member) / Barnaby, Hugh (Committee member) / Arizona State University (Publisher)
Created2012
151354-Thumbnail Image.png
Description
The design and development of analog/mixed-signal (AMS) integrated circuits (ICs) is becoming increasingly expensive, complex, and lengthy. Rapid prototyping and emulation of analog ICs will be significant in the design and testing of complex analog systems. A new approach, Programmable ANalog Device Array (PANDA) that maps any AMS design problem

The design and development of analog/mixed-signal (AMS) integrated circuits (ICs) is becoming increasingly expensive, complex, and lengthy. Rapid prototyping and emulation of analog ICs will be significant in the design and testing of complex analog systems. A new approach, Programmable ANalog Device Array (PANDA) that maps any AMS design problem to a transistor-level programmable hardware, is proposed. This approach enables fast system level validation and a reduction in post-Silicon bugs, minimizing design risk and cost. The unique features of the approach include 1) transistor-level programmability that emulates each transistor behavior in an analog design, achieving very fine granularity of reconfiguration; 2) programmable switches that are treated as a design component during analog transistor emulating, and optimized with the reconfiguration matrix; 3) compensation of AC performance degradation through boosting the bias current. Based on these principles, a digitally controlled PANDA platform is designed at 45nm node that can map AMS modules across 22nm to 90nm technology nodes. A systematic emulation approach to map any analog transistor to PANDA cell is proposed, which achieves transistor level matching accuracy of less than 5% for ID and less than 10% for Rout and Gm. Circuit level analog metrics of a voltage-controlled oscillator (VCO) emulated by PANDA, match to those of the original designs in 90nm nodes with less than a 5% error. Voltage-controlled delay lines at 65nm and 90nm are emulated by 32nm PANDA, which successfully match important analog metrics. And at-speed emulation is achieved as well. Several other 90nm analog blocks are successfully emulated by the 45nm PANDA platform, including a folded-cascode operational amplifier and a sample-and-hold module (S/H)
ContributorsXu, Cheng (Author) / Cao, Yu (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2012
151533-Thumbnail Image.png
Description
Memories play an integral role in today's advanced ICs. Technology scaling has enabled high density designs at the price paid for impact due to variability and reliability. It is imperative to have accurate methods to measure and extract the variability in the SRAM cell to produce accurate reliability projections for

Memories play an integral role in today's advanced ICs. Technology scaling has enabled high density designs at the price paid for impact due to variability and reliability. It is imperative to have accurate methods to measure and extract the variability in the SRAM cell to produce accurate reliability projections for future technologies. This work presents a novel test measurement and extraction technique which is non-invasive to the actual operation of the SRAM memory array. The salient features of this work include i) A single ended SRAM test structure with no disturbance to SRAM operations ii) a convenient test procedure that only requires quasi-static control of external voltages iii) non-iterative method that extracts the VTH variation of each transistor from eight independent switch point measurements. With the present day technology scaling, in addition to the variability with the process, there is also the impact of other aging mechanisms which become dominant. The various aging mechanisms like Negative Bias Temperature Instability (NBTI), Channel Hot Carrier (CHC) and Time Dependent Dielectric Breakdown (TDDB) are critical in the present day nano-scale technology nodes. In this work, we focus on the impact of NBTI due to aging in the SRAM cell and have used Trapping/De-Trapping theory based log(t) model to explain the shift in threshold voltage VTH. The aging section focuses on the following i) Impact of Statistical aging in PMOS device due to NBTI dominates the temporal shift of SRAM cell ii) Besides static variations , shifting in VTH demands increased guard-banding margins in design stage iii) Aging statistics remain constant during the shift, presenting a secondary effect in aging prediction. iv) We have investigated to see if the aging mechanism can be used as a compensation technique to reduce mismatch due to process variations. Finally, the entire test setup has been tested in SPICE and also validated with silicon and the results are presented. The method also facilitates the study of design metrics such as static, read and write noise margins and also the data retention voltage and thus help designers to improve the cell stability of SRAM.
ContributorsRavi, Venkatesa (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Clark, Lawrence (Committee member) / Arizona State University (Publisher)
Created2013
151410-Thumbnail Image.png
Description
Test cost has become a significant portion of device cost and a bottleneck in high volume manufacturing. Increasing integration density and shrinking feature sizes increased test time/cost and reduce observability. Test engineers have to put a tremendous effort in order to maintain test cost within an acceptable budget. Unfortunately, there

Test cost has become a significant portion of device cost and a bottleneck in high volume manufacturing. Increasing integration density and shrinking feature sizes increased test time/cost and reduce observability. Test engineers have to put a tremendous effort in order to maintain test cost within an acceptable budget. Unfortunately, there is not a single straightforward solution to the problem. Products that are tested have several application domains and distinct customer profiles. Some products are required to operate for long periods of time while others are required to be low cost and optimized for low cost. Multitude of constraints and goals make it impossible to find a single solution that work for all cases. Hence, test development/optimization is typically design/circuit dependent and even process specific. Therefore, test optimization cannot be performed using a single test approach, but necessitates a diversity of approaches. This works aims at addressing test cost minimization and test quality improvement at various levels. In the first chapter of the work, we investigate pre-silicon strategies, such as design for test and pre-silicon statistical simulation optimization. In the second chapter, we investigate efficient post-silicon test strategies, such as adaptive test, adaptive multi-site test, outlier analysis, and process shift detection/tracking.
ContributorsYilmaz, Ender (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Cao, Yu (Committee member) / Christen, Jennifer Blain (Committee member) / Arizona State University (Publisher)
Created2012