Matching Items (84)
152139-Thumbnail Image.png
Description
ABSTRACT Developing new non-traditional device models is gaining popularity as the silicon-based electrical device approaches its limitation when it scales down. Membrane systems, also called P systems, are a new class of biological computation model inspired by the way cells process chemical signals. Spiking Neural P systems (SNP systems), a

ABSTRACT Developing new non-traditional device models is gaining popularity as the silicon-based electrical device approaches its limitation when it scales down. Membrane systems, also called P systems, are a new class of biological computation model inspired by the way cells process chemical signals. Spiking Neural P systems (SNP systems), a certain kind of membrane systems, is inspired by the way the neurons in brain interact using electrical spikes. Compared to the traditional Boolean logic, SNP systems not only perform similar functions but also provide a more promising solution for reliable computation. Two basic neuron types, Low Pass (LP) neurons and High Pass (HP) neurons, are introduced. These two basic types of neurons are capable to build an arbitrary SNP neuron. This leads to the conclusion that these two basic neuron types are Turing complete since SNP systems has been proved Turing complete. These two basic types of neurons are further used as the elements to construct general-purpose arithmetic circuits, such as adder, subtractor and comparator. In this thesis, erroneous behaviors of neurons are discussed. Transmission error (spike loss) is proved to be equivalent to threshold error, which makes threshold error discussion more universal. To improve the reliability, a new structure called motif is proposed. Compared to Triple Modular Redundancy improvement, motif design presents its efficiency and effectiveness in both single neuron and arithmetic circuit analysis. DRAM-based CMOS circuits are used to implement the two basic types of neurons. Functionality of basic type neurons is proved using the SPICE simulations. The motif improved adder and the comparator, as compared to conventional Boolean logic design, are much more reliable with lower leakage, and smaller silicon area. This leads to the conclusion that SNP system could provide a more promising solution for reliable computation than the conventional Boolean logic.
ContributorsAn, Pei (Author) / Cao, Yu (Thesis advisor) / Barnaby, Hugh (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2013
151310-Thumbnail Image.png
Description
Characterization of standard cells is one of the crucial steps in the IC design. Scaling of CMOS technology has lead to timing un-certainties such as that of cross coupling noise due to interconnect parasitic, skew variation due to voltage jitter and proximity effect of multiple inputs switching (MIS). Due to

Characterization of standard cells is one of the crucial steps in the IC design. Scaling of CMOS technology has lead to timing un-certainties such as that of cross coupling noise due to interconnect parasitic, skew variation due to voltage jitter and proximity effect of multiple inputs switching (MIS). Due to increased operating frequency and process variation, the probability of MIS occurrence and setup / hold failure within a clock cycle is high. The delay variation due to temporal proximity of MIS is significant for multiple input gates in the standard cell library. The shortest paths are affected by MIS due to the lack of averaging effect. Thus, sensitive designs such as that of SRAM row and column decoder circuits have high probability for MIS impact. The traditional static timing analysis (STA) assumes single input switching (SIS) scenario which is not adequate enough to capture gate delay accurately, as the delay variation due to temporal proximity of the MIS is ~15%-45%. Whereas, considering all possible scenarios of MIS for characterization is computationally intensive with huge data volume. Various modeling techniques are developed for the characterization of MIS effect. Some techniques require coefficient extraction through multiple spice simulation, and do not discuss speed up approach or apply models with complicated algorithms to account for MIS effect. The STA flow accounts for process variation through uncertainty parameter to improve product yield. Some of the MIS delay variability models account for MIS variation through table look up approach, resulting in huge data volume or do not consider propagation of RAT in the design flow. Thus, there is a need for a methodology to model MIS effect with less computational resource, and integration of such effect into design flow without trading off the accuracy. A finite-point based analytical model for MIS effect is proposed for multiple input logic gates and similar approach is extended for setup/hold characterization of sequential elements. Integration of MIS variation into design flow is explored. The proposed methodology is validated using benchmark circuits at 45nm technology node under process variation. Experimental results show significant reduction in runtime and data volume with ~10% error compared to that of SPICE simulation.
ContributorsSubramaniam, Anupama R (Author) / Cao, Yu (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Roveda, Janet (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
151296-Thumbnail Image.png
Description
Scaling of the classical planar MOSFET below 20 nm gate length is facing not only technological difficulties but also limitations imposed by short channel effects, gate and junction leakage current due to quantum tunneling, high body doping induced threshold voltage variation, and carrier mobility degradation. Non-classical multiple-gate structures such as

Scaling of the classical planar MOSFET below 20 nm gate length is facing not only technological difficulties but also limitations imposed by short channel effects, gate and junction leakage current due to quantum tunneling, high body doping induced threshold voltage variation, and carrier mobility degradation. Non-classical multiple-gate structures such as double-gate (DG) FinFETs and surrounding gate field-effect-transistors (SGFETs) have good electrostatic integrity and are an alternative to planar MOSFETs for below 20 nm technology nodes. Circuit design with these devices need compact models for SPICE simulation. In this work physics based compact models for the common-gate symmetric DG-FinFET, independent-gate asymmetric DG-FinFET, and SGFET are developed. Despite the complex device structure and boundary conditions for the Poisson-Boltzmann equation, the core structure of the DG-FinFET and SGFET models, are maintained similar to the surface potential based compact models for planar MOSFETs such as SP and PSP. TCAD simulations show differences between the transient behavior and the capacitance-voltage characteristics of bulk and SOI FinFETs if the gate-voltage swing includes the accumulation region. This effect can be captured by a compact model of FinFETs only if it includes the contribution of both types of carriers in the Poisson-Boltzmann equation. An accurate implicit input voltage equation valid in all regions of operation is proposed for common-gate symmetric DG-FinFETs with intrinsic or lightly doped bodies. A closed-form algorithm is developed for solving the new input voltage equation including ambipolar effects. The algorithm is verified for both the surface potential and its derivatives and includes a previously published analytical approximation for surface potential as a special case when ambipolar effects can be neglected. The symmetric linearization method for common-gate symmetric DG-FinFETs is developed in a form free of the charge-sheet approximation present in its original formulation for bulk MOSFETs. The accuracy of the proposed technique is verified by comparison with exact results. An alternative and computationally efficient description of the boundary between the trigonometric and hyperbolic solutions of the Poisson-Boltzmann equation for the independent-gate asymmetric DG-FinFET is developed in terms of the Lambert W function. Efficient numerical algorithm is proposed for solving the input voltage equation. Analytical expressions for terminal charges of an independent-gate asymmetric DG-FinFET are derived. The new charge model is C-infinity continuous, valid for weak as well as for strong inversion condition of both the channels and does not involve the charge-sheet approximation. This is accomplished by developing the symmetric linearization method in a form that does not require identical boundary conditions at the two Si-SiO2 interfaces and allows for volume inversion in the DG-FinFET. Verification of the model is performed with both numerical computations and 2D TCAD simulations under a wide range of biasing conditions. The model is implemented in a standard circuit simulator through Verilog-A code. Simulation examples for both digital and analog circuits verify good model convergence and demonstrate the capabilities of new circuit topologies that can be implemented using independent-gate asymmetric DG-FinFETs.
ContributorsDessai, Gajanan (Author) / Gildenblat, Gennady (Committee member) / McAndrew, Colin (Committee member) / Cao, Yu (Committee member) / Barnaby, Hugh (Committee member) / Arizona State University (Publisher)
Created2012
151354-Thumbnail Image.png
Description
The design and development of analog/mixed-signal (AMS) integrated circuits (ICs) is becoming increasingly expensive, complex, and lengthy. Rapid prototyping and emulation of analog ICs will be significant in the design and testing of complex analog systems. A new approach, Programmable ANalog Device Array (PANDA) that maps any AMS design problem

The design and development of analog/mixed-signal (AMS) integrated circuits (ICs) is becoming increasingly expensive, complex, and lengthy. Rapid prototyping and emulation of analog ICs will be significant in the design and testing of complex analog systems. A new approach, Programmable ANalog Device Array (PANDA) that maps any AMS design problem to a transistor-level programmable hardware, is proposed. This approach enables fast system level validation and a reduction in post-Silicon bugs, minimizing design risk and cost. The unique features of the approach include 1) transistor-level programmability that emulates each transistor behavior in an analog design, achieving very fine granularity of reconfiguration; 2) programmable switches that are treated as a design component during analog transistor emulating, and optimized with the reconfiguration matrix; 3) compensation of AC performance degradation through boosting the bias current. Based on these principles, a digitally controlled PANDA platform is designed at 45nm node that can map AMS modules across 22nm to 90nm technology nodes. A systematic emulation approach to map any analog transistor to PANDA cell is proposed, which achieves transistor level matching accuracy of less than 5% for ID and less than 10% for Rout and Gm. Circuit level analog metrics of a voltage-controlled oscillator (VCO) emulated by PANDA, match to those of the original designs in 90nm nodes with less than a 5% error. Voltage-controlled delay lines at 65nm and 90nm are emulated by 32nm PANDA, which successfully match important analog metrics. And at-speed emulation is achieved as well. Several other 90nm analog blocks are successfully emulated by the 45nm PANDA platform, including a folded-cascode operational amplifier and a sample-and-hold module (S/H)
ContributorsXu, Cheng (Author) / Cao, Yu (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2012
151533-Thumbnail Image.png
Description
Memories play an integral role in today's advanced ICs. Technology scaling has enabled high density designs at the price paid for impact due to variability and reliability. It is imperative to have accurate methods to measure and extract the variability in the SRAM cell to produce accurate reliability projections for

Memories play an integral role in today's advanced ICs. Technology scaling has enabled high density designs at the price paid for impact due to variability and reliability. It is imperative to have accurate methods to measure and extract the variability in the SRAM cell to produce accurate reliability projections for future technologies. This work presents a novel test measurement and extraction technique which is non-invasive to the actual operation of the SRAM memory array. The salient features of this work include i) A single ended SRAM test structure with no disturbance to SRAM operations ii) a convenient test procedure that only requires quasi-static control of external voltages iii) non-iterative method that extracts the VTH variation of each transistor from eight independent switch point measurements. With the present day technology scaling, in addition to the variability with the process, there is also the impact of other aging mechanisms which become dominant. The various aging mechanisms like Negative Bias Temperature Instability (NBTI), Channel Hot Carrier (CHC) and Time Dependent Dielectric Breakdown (TDDB) are critical in the present day nano-scale technology nodes. In this work, we focus on the impact of NBTI due to aging in the SRAM cell and have used Trapping/De-Trapping theory based log(t) model to explain the shift in threshold voltage VTH. The aging section focuses on the following i) Impact of Statistical aging in PMOS device due to NBTI dominates the temporal shift of SRAM cell ii) Besides static variations , shifting in VTH demands increased guard-banding margins in design stage iii) Aging statistics remain constant during the shift, presenting a secondary effect in aging prediction. iv) We have investigated to see if the aging mechanism can be used as a compensation technique to reduce mismatch due to process variations. Finally, the entire test setup has been tested in SPICE and also validated with silicon and the results are presented. The method also facilitates the study of design metrics such as static, read and write noise margins and also the data retention voltage and thus help designers to improve the cell stability of SRAM.
ContributorsRavi, Venkatesa (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Clark, Lawrence (Committee member) / Arizona State University (Publisher)
Created2013
151410-Thumbnail Image.png
Description
Test cost has become a significant portion of device cost and a bottleneck in high volume manufacturing. Increasing integration density and shrinking feature sizes increased test time/cost and reduce observability. Test engineers have to put a tremendous effort in order to maintain test cost within an acceptable budget. Unfortunately, there

Test cost has become a significant portion of device cost and a bottleneck in high volume manufacturing. Increasing integration density and shrinking feature sizes increased test time/cost and reduce observability. Test engineers have to put a tremendous effort in order to maintain test cost within an acceptable budget. Unfortunately, there is not a single straightforward solution to the problem. Products that are tested have several application domains and distinct customer profiles. Some products are required to operate for long periods of time while others are required to be low cost and optimized for low cost. Multitude of constraints and goals make it impossible to find a single solution that work for all cases. Hence, test development/optimization is typically design/circuit dependent and even process specific. Therefore, test optimization cannot be performed using a single test approach, but necessitates a diversity of approaches. This works aims at addressing test cost minimization and test quality improvement at various levels. In the first chapter of the work, we investigate pre-silicon strategies, such as design for test and pre-silicon statistical simulation optimization. In the second chapter, we investigate efficient post-silicon test strategies, such as adaptive test, adaptive multi-site test, outlier analysis, and process shift detection/tracking.
ContributorsYilmaz, Ender (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Cao, Yu (Committee member) / Christen, Jennifer Blain (Committee member) / Arizona State University (Publisher)
Created2012
150660-Thumbnail Image.png
Description
Semiconductor scaling technology has led to a sharp growth in transistor counts. This has resulted in an exponential increase on both power dissipation and heat flux (or power density) in modern microprocessors. These microprocessors are integrated as the major components in many modern embedded devices, which offer richer features and

Semiconductor scaling technology has led to a sharp growth in transistor counts. This has resulted in an exponential increase on both power dissipation and heat flux (or power density) in modern microprocessors. These microprocessors are integrated as the major components in many modern embedded devices, which offer richer features and attain higher performance than ever before. Therefore, power and thermal management have become the significant design considerations for modern embedded devices. Dynamic voltage/frequency scaling (DVFS) and dynamic power management (DPM) are two well-known hardware capabilities offered by modern embedded processors. However, the power or thermal aware performance optimization is not fully explored for the mainstream embedded processors with discrete DVFS and DPM capabilities. Many key problems have not been answered yet. What is the maximum performance that an embedded processor can achieve under power or thermal constraint for a periodic application? Does there exist an efficient algorithm for the power or thermal management problems with guaranteed quality bound? These questions are hard to be answered because the discrete settings of DVFS and DPM enhance the complexity of many power and thermal management problems, which are generally NP-hard. The dissertation presents a comprehensive study on these NP-hard power and thermal management problems for embedded processors with discrete DVFS and DPM capabilities. In the domain of power management, the dissertation addresses the power minimization problem for real-time schedules, the energy-constrained make-span minimization problem on homogeneous and heterogeneous chip multiprocessors (CMP) architectures, and the battery aware energy management problem with nonlinear battery discharging model. In the domain of thermal management, the work addresses several thermal-constrained performance maximization problems for periodic embedded applications. All the addressed problems are proved to be NP-hard or strongly NP-hard in the study. Then the work focuses on the design of the off-line optimal or polynomial time approximation algorithms as solutions in the problem design space. Several addressed NP-hard problems are tackled by dynamic programming with optimal solutions and pseudo-polynomial run time complexity. Because the optimal algorithms are not efficient in worst case, the fully polynomial time approximation algorithms are provided as more efficient solutions. Some efficient heuristic algorithms are also presented as solutions to several addressed problems. The comprehensive study answers the key questions in order to fully explore the power and thermal management potentials on embedded processors with discrete DVFS and DPM capabilities. The provided solutions enable the theoretical analysis of the maximum performance for periodic embedded applications under power or thermal constraints.
ContributorsZhang, Sushu (Author) / Chatha, Karam S (Thesis advisor) / Cao, Yu (Committee member) / Konjevod, Goran (Committee member) / Vrudhula, Sarma (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2012
150458-Thumbnail Image.png
Description
During the past decade, different kinds of fancy functions are developed in portable electronic devices. This trend triggers the research of how to enhance battery lifetime to meet the requirement of fast growing demand of power in portable devices. DC-DC converter is the connection configuration between the battery and the

During the past decade, different kinds of fancy functions are developed in portable electronic devices. This trend triggers the research of how to enhance battery lifetime to meet the requirement of fast growing demand of power in portable devices. DC-DC converter is the connection configuration between the battery and the functional circuitry. A good design of DC-DC converter will maximize the power efficiency and stabilize the power supply of following stages. As the representative of the DC-DC converter, Buck converter, which is a step down DC-DC converter that the output voltage level is smaller than the input voltage level, is the best-fit sample to start with. Digital control for DC-DC converters reduces noise sensitivity and enhances process, voltage and temperature (PVT) tolerance compared with analog control method. Also it will reduce the chip area and cost correspondingly. In battery-friendly perspective, current mode control has its advantage in over-current protection and parallel current sharing, which can form different structures to extend battery lifetime. In the thesis, the method to implement digitally average current mode control is introduced; including the FPGA based digital controller design flow. Based on the behavioral model of the close loop Buck converter with digital current control, the first FPGA based average current mode controller is burned into board and tested. With the analysis, the design metric of average current mode control is provided in the study. This will be the guideline of the parallel structure of future research.
ContributorsFu, Chao (Author) / Bakkaloglu, Bertan (Thesis advisor) / Cao, Yu (Committee member) / Vermeire, Bert (Committee member) / Arizona State University (Publisher)
Created2011
151070-Thumbnail Image.png
Description
Built-in-Self-Test (BiST) for transmitters is a desirable choice since it eliminates the reliance on expensive instrumentation to do RF signal analysis. Existing on-chip resources, such as power or envelope detectors, or small additional circuitry can be used for BiST purposes. However, due to limited bandwidth, measurement of complex specifications, such

Built-in-Self-Test (BiST) for transmitters is a desirable choice since it eliminates the reliance on expensive instrumentation to do RF signal analysis. Existing on-chip resources, such as power or envelope detectors, or small additional circuitry can be used for BiST purposes. However, due to limited bandwidth, measurement of complex specifications, such as IQ imbalance, is challenging. In this work, a BiST technique to compute transmitter IQ imbalances using measurements out of a self-mixing envelope detector is proposed. Both the linear and non linear parameters of the RF transmitter path are extracted successfully. We first derive an analytical expression for the output signal. Using this expression, we devise test signals to isolate the effects of gain and phase imbalance, DC offsets, time skews and system nonlinearity from other parameters of the system. Once isolated, these parameters are calculated easily with a few mathematical operations. Simulations and hardware measurements show that the technique can provide accurate characterization of IQ imbalances. One of the glaring advantages of this method is that, the impairments are extracted from analyzing the response at baseband frequency and thereby eliminating the need of high frequency ATE (Automated Test Equipment).
ContributorsByregowda, Srinath (Author) / Ozev, Sule (Thesis advisor) / Cao, Yu (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
150994-Thumbnail Image.png
Description
Lateral Double-diffused (LDMOS) transistors are commonly used in power management, high voltage/current, and RF circuits. Their characteristics include high breakdown voltage, low on-resistance, and compatibility with standard CMOS and BiCMOS manufacturing processes. As with other semiconductor devices, an accurate and physical compact model is critical for LDMOS-based circuit design. The

Lateral Double-diffused (LDMOS) transistors are commonly used in power management, high voltage/current, and RF circuits. Their characteristics include high breakdown voltage, low on-resistance, and compatibility with standard CMOS and BiCMOS manufacturing processes. As with other semiconductor devices, an accurate and physical compact model is critical for LDMOS-based circuit design. The goal of this research work is to advance the state-of-the-art by developing a physics-based scalable compact model of LDMOS transistors. The new model, SP-HV, is constructed from a surface-potential-based bulk MOSFET model, PSP, and a nonlinear resistor model, R3. The use of independently verified and mature sub-models leads to increased accuracy and robustness of an overall LDMOS model. Improved geometry scaling and simplified statistical modeling are other useful and practical consequences of the approach. Extensions are made to both PSP and R3 for improved modeling of LDMOS devices, and one internal node is introduced to connect the two component models. The presence of the lightly-doped drift region in LDMOS transistors causes some characteristic device effects which are usually not observed in conventional MOSFETs. These include quasi-saturation, a sharp peak in transconductance at low VD, gate capacitance exceeding oxide capacitance at positive VD, negative transcapacitances CBG and CGB at positive VD, a "double-hump" IB(VG) current and expansion effects. SP-HV models these effects accurately. It also includes a scalable self-heating model which is important to model the geometry dependence of the expansion effect. SP-HV, including its scalability, is verified extensively by comparison both to TCAD simulations and experimental data. The close agreement confirms the validity of the model structure. Circuit simulation examples are presented to demonstrate its convergence.
ContributorsYao, Wei (Author) / Gildenblat, Gennady (Thesis advisor) / Barnaby, Hugh (Committee member) / Cao, Yu (Committee member) / McAndrew, Colin (Committee member) / Arizona State University (Publisher)
Created2012