Matching Items (7)
149880-Thumbnail Image.png
Description
Rotorcraft operation in austere environments can result in difficult operating conditions, particularly in the vicinity of sandy areas. The uplift of sediment by rotorcraft downwash, a phenomenon known as brownout, hinders pilot visual cues and may result in a potentially dangerous situation. Brownout is a complex multiphase flow problem that

Rotorcraft operation in austere environments can result in difficult operating conditions, particularly in the vicinity of sandy areas. The uplift of sediment by rotorcraft downwash, a phenomenon known as brownout, hinders pilot visual cues and may result in a potentially dangerous situation. Brownout is a complex multiphase flow problem that is not unique and depends on both the characteristics of the rotorcraft and the sediment. The lack of fundamental understanding constrains models and limits development of technologies that could mitigate the adverse effects of brownout. This provides the over-arching motivation of the current work focusing on models of particle-laden sediment beds. The particular focus of the current investigations is numerical modeling of near-surface fluid-particle interactions in turbulent boundary layers with and without coherent vortices superimposed on the background flow, that model rotorcraft downwash. The simulations are performed with two groups of particles having different densities both of which display strong vortex-particle interaction close to the source location. The simulations include cases with inter-particle collisions and gravitational settling. Particle effects on the fluid are ignored. The numerical simulations are performed using an Euler- Lagrange method in which a fractional-step approach is used for the fluid and with the particulate phase advanced using Discrete Particle Simulation. The objectives are to gain insight into the fluid-particle dynamics that influence transport near the bed by analyzing the competing effects of the vortices, inter-particle collisions, and gravity. Following the introduction of coherent vortices into the domain, the structures convect downstream, dissipate, and then recover to an equilibrium state with the boundary layer. The particle phase displays an analogous return to an equilibrium state as the vortices dissipate and the boundary layer recovers, though this recovery is slower than for the fluid and is sensitive to the particle response time. The effects of inter-particle collisions are relatively strong and apparent throughout the flow, being most effective in the boundary layer. Gravitational settling increases the particle concentration near the wall and consequently increase inter-particle collisions.
ContributorsMorales, Fernando (Author) / Squires, Kyle D. (Thesis advisor) / Wells, Valana L. (Committee member) / Calhoun, Ronald J. (Committee member) / Arizona State University (Publisher)
Created2011
151240-Thumbnail Image.png
Description
Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study

Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization method was successfully developed and applied to synthesize polystyrene-silica core-shell composite particles. Possible mechanisms of the Pickering emulsion polymerization were also explored. The silica nanoparticles were thermodynamically favorable to self-assemble at liquid-liquid interfaces at the initial stage of polymerization and remained at the interface to finally form the shells of the composite particles. More importantly, Pickering emulsion polymerization was employed to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The composite nanoparticles were temperature sensitive and could be up-taken by human prostate cancer cells and demonstrated effectiveness in drug delivery and cancer therapy. Similarly, by incorporating poly-2-(N,N)-dimethylamino)ethyl methacrylate (PDMA) into the core, pH sensitive core-shell composite nanoparticles were synthesized and applied as effective carriers to release a rheological modifier upon a pH change. Finally, the research focuses on facile approaches to engineer the transition of the temperature-sensitive particles and develop composite core-shell nanoparticles with a metallic shell.
ContributorsSanyal, Sriya (Author) / Dai, Lenore L. (Thesis advisor) / Jiang, Hanqing (Committee member) / Lind, Mary L. (Committee member) / Phelan, Patrick (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2012
Description
This thesis focuses on an improved understanding of the dynamics at different length scales of wind farms in an atmospheric boundary layer (ABL) using a series of visualization studies and Fourier, wavelet based spectral analysis using high fidelity large eddy simulation (LES). For this purpose, a robust LES based neutral

This thesis focuses on an improved understanding of the dynamics at different length scales of wind farms in an atmospheric boundary layer (ABL) using a series of visualization studies and Fourier, wavelet based spectral analysis using high fidelity large eddy simulation (LES). For this purpose, a robust LES based neutral ABL model at very high Reynolds number has been developed using a high order spectral element method which has been validated against the previous literature. This ABL methodology has been used as a building block to drive large wind turbine arrays or wind farms residing inside the boundary layer as documented in the subsequent work. Studies conducted in the thesis involving massive periodic wind farms with neutral ABL have indicated towards the presence of large scale coherent structures that contribute to the power generated by the wind turbines via downdraft mechanisms which are also responsible for the modulation of near wall dynamics. This key idea about the modulation of large scales have seen a lot of promise in the application of flow past vertically staggered wind farms with turbines at different scales. Eventually, studies involving wind farms have been progressively evolved in a framework of inflow-outflow where the turbulent inflow is being fed from the precursor ABL using a spectral interpolation technique. This methodology has been used to enhance the understanding related to the multiscale physics of wind farm ABL interaction, where phenomenon like the growth of the inner layer, and wake impingement effects in the subsequent rows of wind turbines are important owing to the streamwise heterogeneity of the flow. Finally, the presence of realistic geophysical effects in the turbulent inflow have been investigated that influence the flow past the wind turbine arrays. Some of the geophysical effects that have been considered include the presence of the Coriolis forces as well as the temporal variation of mean wind magnitude and direction that might occur due to mesoscale dynamics. This study has been compared against field experimental results which provides an important step towards understanding the capability of the mean data driven LES methodology in predicting realistic flow structures.
ContributorsChatterjee, Tanmoy (Author) / Peet, Yulia T. (Thesis advisor) / Adrian, Ronald J. (Committee member) / Calhoun, Ronald J. (Committee member) / Huang, Huei-Ping (Committee member) / Moustaoui, Mohamed (Committee member) / Arizona State University (Publisher)
Created2018
136535-Thumbnail Image.png
Description
Monodispersed zwitterionic microgel (ZI-MG) particles that undergo an extensive, reversible change in volume in response to environmental stimuli such as pH and temperature were synthesized. These aqueous ZI-MG dispersions exhibited a minimum hydrodynamic diameter value at an adjustable isoelectric point(IEP). In addition, the study elucidates the controlled uptake and release

Monodispersed zwitterionic microgel (ZI-MG) particles that undergo an extensive, reversible change in volume in response to environmental stimuli such as pH and temperature were synthesized. These aqueous ZI-MG dispersions exhibited a minimum hydrodynamic diameter value at an adjustable isoelectric point(IEP). In addition, the study elucidates the controlled uptake and release of ionic and nonionic surfactants from these particle systems. The extent of surfactant loading and the ensuing relative swelling/deswelling behaviors within the colloidal polymer networks are explained in terms of their binding interactions.
ContributorsKelley, Morgan Taylor (Author) / Dai, Lenore L. (Thesis director) / Chen, Haobo (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
153727-Thumbnail Image.png
Description
Conventional fluid dynamics models such as the Navier-Stokes equations are derived for prediction of fluid motion at or near equilibrium, classic examples being the motion of fluids for which inter-molecular collisions are dominant. Flows at equilibrium permit simplifications such as the introduction of viscosity and also lead to solutions

Conventional fluid dynamics models such as the Navier-Stokes equations are derived for prediction of fluid motion at or near equilibrium, classic examples being the motion of fluids for which inter-molecular collisions are dominant. Flows at equilibrium permit simplifications such as the introduction of viscosity and also lead to solutions that are single-valued. However, many other regimes of interest include "fluids"' far from equilibrium; for example, rarefied gases or particle-laden flows in which the dispersed phase can be comprised of granular solids, droplets, or bubbles. Particle motion in these flows is not typically dominated by collisions and may exhibit significant memory effects; therefore, is often poorly described using continuum, field-based (Eulerian) approaches. Non-equilibrium flows generally lack a straightforward counterpart to viscosity and their multi-valued solutions cannot be represented by most Eulerian methods. This strongly motivates different strategies to address current shortcomings and the novel approach adopted in this work is based on the Conditional Quadrature Method of Moments (CQMOM). In CQMOM, moment equations are derived from the Boltzmann equation using a quadrature approximation of the velocity probability density function (PDF). CQMOM circumvents the drawbacks of current methods and leads to multivariate and multidimensional solutions in an Eulerian frame of reference. In the present work, the discretized PDF is resolved using an adaptive two-point quadrature in three-dimensional velocity space. The method is applied to computation of a series of non-equilibrium flows, ranging from simple two-dimensional test cases to fully-turbulent three-dimensional wall-bounded particle-laden flows. The primary contribution of the present effort is on development, application, and assessment of CQMOM for predicting the key features of dilute particle-laden flows. Statistical descriptors such as mean concentration and mean velocity are in good agreement with previous results, for both collision-less and collisional flows at varying particle Stokes numbers. Turbulent statistics and measures of local accumulation agree less favorably with prior results and identify areas for improvement in the modeling strategy.
ContributorsDunn, Dennis Martin (Author) / Squires, Kyle D. (Thesis advisor) / Calhoun, Ronald J. (Committee member) / Chen, Kangping (Committee member) / Dai, Lenore L. (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2015
154058-Thumbnail Image.png
Description
Environmentally responsive hydrogels are one interesting class of soft materials. Due to their remarkable responsiveness to stimuli such as temperature, pH, or light, they have attracted widespread attention in many fields. However, certain functionality of these materials alone is often limited in comparison to other materials such as silicon; thus,

Environmentally responsive hydrogels are one interesting class of soft materials. Due to their remarkable responsiveness to stimuli such as temperature, pH, or light, they have attracted widespread attention in many fields. However, certain functionality of these materials alone is often limited in comparison to other materials such as silicon; thus, there is a need to integrate soft and hard materials for the advancement of environmental-ly responsive materials.

Conventional hydrogels lack good mechanical properties and have inherently slow response time, important characteristics which must be improved before the hydrogels can be integrated with silicon. In the present dissertation work, both these important attrib-utes of a temperature responsive hydrogel, poly(N-isopropylacrylamide) (PNIPAAm), were improved by adopting a low temperature polymerization process and adding a sili-cate compound, tetramethyl orthosilicate. Furthermore, the transition temperature was modulated by adjusting the media quality in which the hydrogels were equilibrated, e.g. by adding a co-solvent (methanol) or an anionic surfactant (sodium dodecyl sulfate). In-terestingly, the results revealed that, based on the hydrogels’ porosity, there were appre-ciable differences when the PNIPAAm hydrogels interacted with the media molecules.

Next, an adhesion mechanism was developed in order to transfer silicon thin film onto the hydrogel surface. This integration provided a means of mechanical buckling of the thin silicon film due to changes in environmental stimuli (e.g., temperature, pH). We also investigated how novel transfer printing techniques could be used to generate pat-terned deformation of silicon thin film when integrated on a planar hydrogel substrate. Furthermore, we explore multilayer hybrid hydrogel structures formed by the integration of different types of hydrogels that have tunable curvatures under the influence of differ-ent stimuli. Silicon thin film integration on such tunable curvature substrates reveal char-acteristic reversible buckling of the thin film in the presence of multiple stimuli.

Finally, different approaches of incorporating visible light response in PNIPAAm are discussed. Specifically, a chemical chromophore- spirobenzopyran was synthesized and integrated through chemical cross-linking into the PNIPAAm hydrogels. Further, methods of improving the light response and mechanical properties were also demonstrat-ed. Interestingly, such a system was shown to have potential application as light modulated topography altering system
ContributorsChatterjee, Prithwish (Author) / Dai, Lenore L. (Thesis advisor) / Jiang, Hanqing (Thesis advisor) / Lind, Mary Laura (Committee member) / Yu, Hongyu (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2015
158067-Thumbnail Image.png
Description
Soft materials are matters that can easily deform from their original shapes and structures under thermal or mechanical stresses, and they range across various groups of materials including liquids, foams, gels, colloids, polymers, and biological substances. Although soft materials already have numerous applications with each of their unique characteristics, integrating

Soft materials are matters that can easily deform from their original shapes and structures under thermal or mechanical stresses, and they range across various groups of materials including liquids, foams, gels, colloids, polymers, and biological substances. Although soft materials already have numerous applications with each of their unique characteristics, integrating materials to achieve complementary functionalities is still a growing need for designing advanced applications of complex requirements. This dissertation explores a unique approach of utilizing intermolecular interactions to accomplish not only the multifunctionality from combined materials but also their tailored properties designed for specific tasks. In this work, multifunctional soft materials are explored in two particular directions, ionic liquids (ILs)-based mixtures and interpenetrating polymer network (IPN).

First, ILs-based mixtures were studied to develop liquid electrolytes for molecular electronic transducers (MET) in planetary exploration. For space missions, it is challenging to operate any liquid electrolytes in an extremely low-temperature environment. By tuning intermolecular interactions, the results demonstrated a facile method that has successfully overcome the thermal and transport barriers of ILs-based mixtures at extremely low temperatures. Incorporation of both aqueous and organic solvents in ILs-based electrolyte systems with varying types of intermolecular interactions are investigated, respectively, to yield optimized material properties supporting not only MET sensors but also other electrochemical devices with iodide/triiodide redox couple targeting low temperatures.

Second, an environmentally responsive hydrogel was synthesized via interpenetrating two crosslinked polymer networks. The intermolecular interactions facilitated by such an IPN structure enables not only an upper critical solution temperature (UCST) transition but also a mechanical enhancement of the hydrogel. The incorporation of functional units validates a positive swelling response to visible light and also further improves the mechanical properties. This studied IPN system can serve as a promising route in developing “smart” hydrogels utilizing visible light as a simple, inexpensive, and remotely controllable stimulus.

Over two directions across from ILs to polymeric networks, this work demonstrates an effective strategy of utilizing intermolecular interactions to not only develop multifunctional soft materials for advanced applications but also discover new properties beyond their original boundaries.
ContributorsXu, Yifei (Author) / Dai, Lenore L. (Thesis advisor) / Forzani, Erica (Committee member) / Holloway, Julianne (Committee member) / Jiang, Hanqing (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2020