Matching Items (2)
Filtering by

Clear all filters

128547-Thumbnail Image.png
Description

Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine

Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13−26% of available metabolites, with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. These results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity.

ContributorsBaran, Richard (Author) / Brodie, Eoin L. (Author) / Mayberry-Lewis, Jazmine (Author) / Hummel, Eric (Author) / Nunes Da Rocha, Ulisses (Author) / Chakraborty, Romy (Author) / Bowen, Benjamin P. (Author) / Karaoz, Ulas (Author) / Cadillo-Quiroz, Hinsby (Author) / Garcia-Pichel, Ferran (Author) / Northern, Trent R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-09-22
128454-Thumbnail Image.png
Description

Here, we report the complete genome sequence (2.92 Mb) of Methanosphaerula palustris E1-9CT, a methanogen isolated from a minerotrophic fen. This is the first genome report of the Methanosphaerula genus, within the Methanoregulaceae family, in the Methanomicrobiales order. E1-9CT relatives are found in a wide range of ecological and geographical

Here, we report the complete genome sequence (2.92 Mb) of Methanosphaerula palustris E1-9CT, a methanogen isolated from a minerotrophic fen. This is the first genome report of the Methanosphaerula genus, within the Methanoregulaceae family, in the Methanomicrobiales order. E1-9CT relatives are found in a wide range of ecological and geographical settings.

ContributorsCadillo-Quiroz, Hinsby (Author) / Browne, Patrick (Author) / Kyrpides, Nikos (Author) / Woyke, Tanja (Author) / Goodwin, Lynne (Author) / Detter, Chris (Author) / Yavitt, Joseph B. (Author) / Zinder, Stephen H. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-11-05