Matching Items (115)
152370-Thumbnail Image.png
Description
Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models.

Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models. This thesis explores using concepts from computational conformal geometry to create a custom software framework for examining and generating quantitative mathematical models for characterizing the geometry of early visual areas in the human brain. The software framework includes a graphical user interface built on top of a selected core conformal flattening algorithm and various software tools compiled specifically for processing and examining retinotopic data. Three conformal flattening algorithms were implemented and evaluated for speed and how well they preserve the conformal metric. All three algorithms performed well in preserving the conformal metric but the speed and stability of the algorithms varied. The software framework performed correctly on actual retinotopic data collected using the standard travelling-wave experiment. Preliminary analysis of the Beltrami coefficient for the early data set shows that selected regions of V1 that contain reasonably smooth eccentricity and polar angle gradients do show significant local conformality, warranting further investigation of this approach for analysis of early and higher visual cortex.
ContributorsTa, Duyan (Author) / Wang, Yalin (Thesis advisor) / Maciejewski, Ross (Committee member) / Wonka, Peter (Committee member) / Arizona State University (Publisher)
Created2013
152300-Thumbnail Image.png
Description
In blindness research, the corpus callosum (CC) is the most frequently studied sub-cortical structure, due to its important involvement in visual processing. While most callosal analyses from brain structural magnetic resonance images (MRI) are limited to the 2D mid-sagittal slice, we propose a novel framework to capture a complete set

In blindness research, the corpus callosum (CC) is the most frequently studied sub-cortical structure, due to its important involvement in visual processing. While most callosal analyses from brain structural magnetic resonance images (MRI) are limited to the 2D mid-sagittal slice, we propose a novel framework to capture a complete set of 3D morphological differences in the corpus callosum between two groups of subjects. The CCs are segmented from whole brain T1-weighted MRI and modeled as 3D tetrahedral meshes. The callosal surface is divided into superior and inferior patches on which we compute a volumetric harmonic field by solving the Laplace's equation with Dirichlet boundary conditions. We adopt a refined tetrahedral mesh to compute the Laplacian operator, so our computation can achieve sub-voxel accuracy. Thickness is estimated by tracing the streamlines in the harmonic field. We combine areal changes found using surface tensor-based morphometry and thickness information into a vector at each vertex to be used as a metric for the statistical analysis. Group differences are assessed on this combined measure through Hotelling's T2 test. The method is applied to statistically compare three groups consisting of: congenitally blind (CB), late blind (LB; onset > 8 years old) and sighted (SC) subjects. Our results reveal significant differences in several regions of the CC between both blind groups and the sighted groups; and to a lesser extent between the LB and CB groups. These results demonstrate the crucial role of visual deprivation during the developmental period in reshaping the structural architecture of the CC.
ContributorsXu, Liang (Author) / Wang, Yalin (Thesis advisor) / Maciejewski, Ross (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
151689-Thumbnail Image.png
Description
Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups

Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups or graphs. In this thesis, I first propose to solve a sparse learning model with a general group structure, where the predefined groups may overlap with each other. Then, I present three real world applications which can benefit from the group structured sparse learning technique. In the first application, I study the Alzheimer's Disease diagnosis problem using multi-modality neuroimaging data. In this dataset, not every subject has all data sources available, exhibiting an unique and challenging block-wise missing pattern. In the second application, I study the automatic annotation and retrieval of fruit-fly gene expression pattern images. Combined with the spatial information, sparse learning techniques can be used to construct effective representation of the expression images. In the third application, I present a new computational approach to annotate developmental stage for Drosophila embryos in the gene expression images. In addition, it provides a stage score that enables one to more finely annotate each embryo so that they are divided into early and late periods of development within standard stage demarcations. Stage scores help us to illuminate global gene activities and changes much better, and more refined stage annotations improve our ability to better interpret results when expression pattern matches are discovered between genes.
ContributorsYuan, Lei (Author) / Ye, Jieping (Thesis advisor) / Wang, Yalin (Committee member) / Xue, Guoliang (Committee member) / Kumar, Sudhir (Committee member) / Arizona State University (Publisher)
Created2013
151336-Thumbnail Image.png
Description
Over 2 billion people are using online social network services, such as Facebook, Twitter, Google+, LinkedIn, and Pinterest. Users update their status, post their photos, share their information, and chat with others in these social network sites every day; however, not everyone shares the same amount of information. This thesis

Over 2 billion people are using online social network services, such as Facebook, Twitter, Google+, LinkedIn, and Pinterest. Users update their status, post their photos, share their information, and chat with others in these social network sites every day; however, not everyone shares the same amount of information. This thesis explores methods of linking publicly available data sources as a means of extrapolating missing information of Facebook. An application named "Visual Friends Income Map" has been created on Facebook to collect social network data and explore geodemographic properties to link publicly available data, such as the US census data. Multiple predictors are implemented to link data sets and extrapolate missing information from Facebook with accurate predictions. The location based predictor matches Facebook users' locations with census data at the city level for income and demographic predictions. Age and relationship based predictors are created to improve the accuracy of the proposed location based predictor utilizing social network link information. In the case where a user does not share any location information on their Facebook profile, a kernel density estimation location predictor is created. This predictor utilizes publicly available telephone record information of all people with the same surname of this user in the US to create a likelihood distribution of the user's location. This is combined with the user's IP level information in order to narrow the probability estimation down to a local regional constraint.
ContributorsMao, Jingxian (Author) / Maciejewski, Ross (Thesis advisor) / Farin, Gerald (Committee member) / Wang, Yalin (Committee member) / Arizona State University (Publisher)
Created2012
151278-Thumbnail Image.png
Description
This document presents a new implementation of the Smoothed Particles Hydrodynamics algorithm using DirectX 11 and DirectCompute. The main goal of this document is to present to the reader an alternative solution to the largely studied and researched problem of fluid simulation. Most other solutions have been implemented using the

This document presents a new implementation of the Smoothed Particles Hydrodynamics algorithm using DirectX 11 and DirectCompute. The main goal of this document is to present to the reader an alternative solution to the largely studied and researched problem of fluid simulation. Most other solutions have been implemented using the NVIDIA CUDA framework; however, the proposed solution in this document uses the Microsoft general-purpose computing on graphics processing units API. The implementation allows for the simulation of a large number of particles in a real-time scenario. The solution presented here uses the Smoothed Particles Hydrodynamics algorithm to calculate the forces within the fluid; this algorithm provides a Lagrangian approach for discretizes the Navier-Stockes equations into a set of particles. Our solution uses the DirectCompute compute shaders to evaluate each particle using the multithreading and multi-core capabilities of the GPU increasing the overall performance. The solution then describes a method for extracting the fluid surface using the Marching Cubes method and the programmable interfaces exposed by the DirectX pipeline. Particularly, this document presents a method for using the Geometry Shader Stage to generate the triangle mesh as defined by the Marching Cubes method. The implementation results show the ability to simulate over 64K particles at a rate of 900 and 400 frames per second, not including the surface reconstruction steps and including the Marching Cubes steps respectively.
ContributorsFigueroa, Gustavo (Author) / Farin, Gerald (Thesis advisor) / Maciejewski, Ross (Committee member) / Wang, Yalin (Committee member) / Arizona State University (Publisher)
Created2012
151154-Thumbnail Image.png
Description
Alzheimer's Disease (AD) is the most common form of dementia observed in elderly patients and has significant social-economic impact. There are many initiatives which aim to capture leading causes of AD. Several genetic, imaging, and biochemical markers are being explored to monitor progression of AD and explore treatment and detection

Alzheimer's Disease (AD) is the most common form of dementia observed in elderly patients and has significant social-economic impact. There are many initiatives which aim to capture leading causes of AD. Several genetic, imaging, and biochemical markers are being explored to monitor progression of AD and explore treatment and detection options. The primary focus of this thesis is to identify key biomarkers to understand the pathogenesis and prognosis of Alzheimer's Disease. Feature selection is the process of finding a subset of relevant features to develop efficient and robust learning models. It is an active research topic in diverse areas such as computer vision, bioinformatics, information retrieval, chemical informatics, and computational finance. In this work, state of the art feature selection algorithms, such as Student's t-test, Relief-F, Information Gain, Gini Index, Chi-Square, Fisher Kernel Score, Kruskal-Wallis, Minimum Redundancy Maximum Relevance, and Sparse Logistic regression with Stability Selection have been extensively exploited to identify informative features for AD using data from Alzheimer's Disease Neuroimaging Initiative (ADNI). An integrative approach which uses blood plasma protein, Magnetic Resonance Imaging, and psychometric assessment scores biomarkers has been explored. This work also analyzes the techniques to handle unbalanced data and evaluate the efficacy of sampling techniques. Performance of feature selection algorithm is evaluated using the relevance of derived features and the predictive power of the algorithm using Random Forest and Support Vector Machine classifiers. Performance metrics such as Accuracy, Sensitivity and Specificity, and area under the Receiver Operating Characteristic curve (AUC) have been used for evaluation. The feature selection algorithms best suited to analyze AD proteomics data have been proposed. The key biomarkers distinguishing healthy and AD patients, Mild Cognitive Impairment (MCI) converters and non-converters, and healthy and MCI patients have been identified.
ContributorsDubey, Rashmi (Author) / Ye, Jieping (Thesis advisor) / Wang, Yalin (Committee member) / Wu, Tong (Committee member) / Arizona State University (Publisher)
Created2012
137429-Thumbnail Image.png
Description
The creative project, The Tiniest Tumbleweed, produces a piece of children's literature in the form of a fully illustrated e-book that can serve as a model for parents, caretakers, and teachers to bring awareness to the importance of imparting positive self-efficacy concepts to young children. The project uses the work

The creative project, The Tiniest Tumbleweed, produces a piece of children's literature in the form of a fully illustrated e-book that can serve as a model for parents, caretakers, and teachers to bring awareness to the importance of imparting positive self-efficacy concepts to young children. The project uses the work of acclaimed psychologist Albert Bandura in the field of self-efficacy as the theoretical foundation of the story. The theme is clearly stated as striving to be all YOU can be and that achieving one's personal best, "is just fine, just fine indeed." By creating a children's picture book, two things are accomplished; first, children hear an endearing story of a tumbleweed and a sparrow that use principles of positive self-efficacy to overcome adversities in their lives. Second, those who teach children have a tool to use to deliver the message over and over again. The Tiniest Tumbleweed also presents a link to science with photographs of the growth patterns of tumbleweeds and house sparrows in their natural environment.
ContributorsPeach, Kathy (Co-author) / Yost, Ashley (Co-author) / Oakes, Wendy (Thesis director) / Ralston, Laurie (Committee member) / Harris, Pamela (Committee member) / Barrett, The Honors College (Contributor) / Mary Lou Fulton Teachers College (Contributor) / Division of Teacher Preparation (Contributor)
Created2013-05
130341-Thumbnail Image.png
Description
Background
In the weeks following the first imported case of Ebola in the U. S. on September 29, 2014, coverage of the very limited outbreak dominated the news media, in a manner quite disproportionate to the actual threat to national public health; by the end of October, 2014, there were only

Background
In the weeks following the first imported case of Ebola in the U. S. on September 29, 2014, coverage of the very limited outbreak dominated the news media, in a manner quite disproportionate to the actual threat to national public health; by the end of October, 2014, there were only four laboratory confirmed cases of Ebola in the entire nation. Public interest in these events was high, as reflected in the millions of Ebola-related Internet searches and tweets performed in the month following the first confirmed case. Use of trending Internet searches and tweets has been proposed in the past for real-time prediction of outbreaks (a field referred to as “digital epidemiology”), but accounting for the biases of public panic has been problematic. In the case of the limited U. S. Ebola outbreak, we know that the Ebola-related searches and tweets originating the U. S. during the outbreak were due only to public interest or panic, providing an unprecedented means to determine how these dynamics affect such data, and how news media may be driving these trends.
Methodology
We examine daily Ebola-related Internet search and Twitter data in the U. S. during the six week period ending Oct 31, 2014. TV news coverage data were obtained from the daily number of Ebola-related news videos appearing on two major news networks. We fit the parameters of a mathematical contagion model to the data to determine if the news coverage was a significant factor in the temporal patterns in Ebola-related Internet and Twitter data.
Conclusions
We find significant evidence of contagion, with each Ebola-related news video inspiring tens of thousands of Ebola-related tweets and Internet searches. Between 65% to 76% of the variance in all samples is described by the news media contagion model.
Created2015-06-11
134706-Thumbnail Image.png
Description
Open source image analytics and data mining software are widely available but can be overly-complicated and non-intuitive for medical physicians and researchers to use. The ASU-Mayo Clinic Imaging Informatics Lab has developed an in-house pipeline to process medical images, extract imaging features, and develop multi-parametric models to assist disease staging

Open source image analytics and data mining software are widely available but can be overly-complicated and non-intuitive for medical physicians and researchers to use. The ASU-Mayo Clinic Imaging Informatics Lab has developed an in-house pipeline to process medical images, extract imaging features, and develop multi-parametric models to assist disease staging and diagnosis. The tools have been extensively used in a number of medical studies including brain tumor, breast cancer, liver cancer, Alzheimer's disease, and migraine. Recognizing the need from users in the medical field for a simplified interface and streamlined functionalities, this project aims to democratize this pipeline so that it is more readily available to health practitioners and third party developers.
ContributorsBaer, Lisa Zhou (Author) / Wu, Teresa (Thesis director) / Wang, Yalin (Committee member) / Computer Science and Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
152126-Thumbnail Image.png
Description
Video object segmentation (VOS) is an important task in computer vision with a lot of applications, e.g., video editing, object tracking, and object based encoding. Different from image object segmentation, video object segmentation must consider both spatial and temporal coherence for the object. Despite extensive previous work, the problem is

Video object segmentation (VOS) is an important task in computer vision with a lot of applications, e.g., video editing, object tracking, and object based encoding. Different from image object segmentation, video object segmentation must consider both spatial and temporal coherence for the object. Despite extensive previous work, the problem is still challenging. Usually, foreground object in the video draws more attention from humans, i.e. it is salient. In this thesis we tackle the problem from the aspect of saliency, where saliency means a certain subset of visual information selected by a visual system (human or machine). We present a novel unsupervised method for video object segmentation that considers both low level vision cues and high level motion cues. In our model, video object segmentation can be formulated as a unified energy minimization problem and solved in polynomial time by employing the min-cut algorithm. Specifically, our energy function comprises the unary term and pair-wise interaction energy term respectively, where unary term measures region saliency and interaction term smooths the mutual effects between object saliency and motion saliency. Object saliency is computed in spatial domain from each discrete frame using multi-scale context features, e.g., color histogram, gradient, and graph based manifold ranking. Meanwhile, motion saliency is calculated in temporal domain by extracting phase information of the video. In the experimental section of this thesis, our proposed method has been evaluated on several benchmark datasets. In MSRA 1000 dataset the result demonstrates that our spatial object saliency detection is superior to the state-of-art methods. Moreover, our temporal motion saliency detector can achieve better performance than existing motion detection approaches in UCF sports action analysis dataset and Weizmann dataset respectively. Finally, we show the attractive empirical result and quantitative evaluation of our approach on two benchmark video object segmentation datasets.
ContributorsWang, Yilin (Author) / Li, Baoxin (Thesis advisor) / Wang, Yalin (Committee member) / Cleveau, David (Committee member) / Arizona State University (Publisher)
Created2013