Matching Items (41)
Filtering by

Clear all filters

149926-Thumbnail Image.png
Description
A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes

A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes of remote identification. Protein patterns were generated using high performance liquid chromatography (HPLC). Patterns created could identify high-traffic and low-traffic indoor spaces. Samples were collected from the air using air pumps to draw air through a filter paper trapping particulates, including large amounts of shed protein matter. In complimentary research aerosolized biological samples were collected from various ecosystems throughout Ecuador to explore the relationship between environmental setting and aerosolized protein concentrations. In order to further enhance protein separation and produce more detailed patterns for the identification of individual organisms of interest; a novel separation device was constructed and characterized. The separation device incorporates a longitudinal gradient as well as insulating dielectrophoretic features within a single channel. This design allows for the production of stronger local field gradients along a global gradient allowing particles to enter, initially transported through the channel by electrophoresis and electroosmosis, and to be isolated according to their characteristic physical properties, including charge, polarizability, deformability, surface charge mobility, dielectric features, and local capacitance. Thus, different types of particles are simultaneously separated at different points along the channel distance given small variations of properties. The device has shown the ability to separate analytes over a large dynamic range of size, from 20 nm to 1 μm, roughly the size of proteins to the size of cells. In the study of different sized sulfate capped polystyrene particles were shown to be selectively captured as well as concentrating particles from 103 to 106 times. Qualitative capture and manipulation of β-amyloid fibrils were also shown. The results demonstrate the selective focusing ability of the technique; and it may form the foundation for a versatile tool for separating complex mixtures. Combined this work shows promise for future identification of individual organisms from aerosolized protein as well as for applications in biomedical research.
ContributorsStaton, Sarah J. R (Author) / Hayes, Mark A. (Committee member) / Anbar, Ariel D (Committee member) / Shock, Everett (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2011
150288-Thumbnail Image.png
Description
In an effort to begin validating the large number of discovered candidate biomarkers, proteomics is beginning to shift from shotgun proteomic experiments towards targeted proteomic approaches that provide solutions to automation and economic concerns. Such approaches to validate biomarkers necessitate the mass spectrometric analysis of hundreds to thousands of human

In an effort to begin validating the large number of discovered candidate biomarkers, proteomics is beginning to shift from shotgun proteomic experiments towards targeted proteomic approaches that provide solutions to automation and economic concerns. Such approaches to validate biomarkers necessitate the mass spectrometric analysis of hundreds to thousands of human samples. As this takes place, a serendipitous opportunity has become evident. By the virtue that as one narrows the focus towards "single" protein targets (instead of entire proteomes) using pan-antibody-based enrichment techniques, a discovery science has emerged, so to speak. This is due to the largely unknown context in which "single" proteins exist in blood (i.e. polymorphisms, transcript variants, and posttranslational modifications) and hence, targeted proteomics has applications for established biomarkers. Furthermore, besides protein heterogeneity accounting for interferences with conventional immunometric platforms, it is becoming evident that this formerly hidden dimension of structural information also contains rich-pathobiological information. Consequently, targeted proteomics studies that aim to ascertain a protein's genuine presentation within disease- stratified populations and serve as a stepping-stone within a biomarker translational pipeline are of clinical interest. Roughly 128 million Americans are pre-diabetic, diabetic, and/or have kidney disease and public and private spending for treating these diseases is in the hundreds of billions of dollars. In an effort to create new solutions for the early detection and management of these conditions, described herein is the design, development, and translation of mass spectrometric immunoassays targeted towards diabetes and kidney disease. Population proteomics experiments were performed for the following clinically relevant proteins: insulin, C-peptide, RANTES, and parathyroid hormone. At least thirty-eight protein isoforms were detected. Besides the numerous disease correlations confronted within the disease-stratified cohorts, certain isoforms also appeared to be causally related to the underlying pathophysiology and/or have therapeutic implications. Technical advancements include multiplexed isoform quantification as well a "dual- extraction" methodology for eliminating non-specific proteins while simultaneously validating isoforms. Industrial efforts towards widespread clinical adoption are also described. Consequently, this work lays a foundation for the translation of mass spectrometric immunoassays into the clinical arena and simultaneously presents the most recent advancements concerning the mass spectrometric immunoassay approach.
ContributorsOran, Paul (Author) / Nelson, Randall (Thesis advisor) / Hayes, Mark (Thesis advisor) / Ros, Alexandra (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2011
152366-Thumbnail Image.png
Description
Water-soluble, adenosine triphosphate (ATP)-stabilized palladium nanoparticles have been synthesized by reduction of palladium salt in the presence of excess ATP. They have been characterized by electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and X-ray diffraction in order to determine particle size, shape, composition and crystal structure. The particles

Water-soluble, adenosine triphosphate (ATP)-stabilized palladium nanoparticles have been synthesized by reduction of palladium salt in the presence of excess ATP. They have been characterized by electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and X-ray diffraction in order to determine particle size, shape, composition and crystal structure. The particles were then subsequently attached to a glassy carbon electrode (GCE) in order to explore their electrochemical properties with regard to hydrogen insertion in 1 M sodium hydroxide. The particles were found to be in the size range 2.5 to 4 nm with good size dispersion. The ATP capping ligand allowed the particles to be air-stable and re-dissolved without agglomeration. It was found that the NPs could be firmly attached to the working electrode via cycling the voltage repeatedly in a NP/phosphate solution. Further electrochemical experiments were conducted to investigate the adsorption and absorption of hydrogen in the NPs in 1 M sodium hydroxide. Results for cyclic voltammetry experiments were consistent with those for nanostructured and thin-film palladium in basic solution. Absorbed hydrogen content was analyzed as a function of potential. The maximum hydrogen:Pd ratio was found to be ~0.7, close the theoretical maximum value for β phase palladium hydride.
ContributorsLamb, Timothy (Author) / Buttry, Daniel A (Thesis advisor) / Yarger, Jeffery (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2013
152441-Thumbnail Image.png
Description
Gold-silver alloy nanoparticles (NPs) capped with adenosine 5'-triphosphate were synthesized by borohydride reduction of dilute aqueous metal precursors. High-resolution transmission electron microscopy showed the as-synthesized particles to be spherical with average diameters ~4 nm. Optical properties were measured by UV-Visible spectroscopy (UV-Vis), and the formation of alloy NPs was verified

Gold-silver alloy nanoparticles (NPs) capped with adenosine 5'-triphosphate were synthesized by borohydride reduction of dilute aqueous metal precursors. High-resolution transmission electron microscopy showed the as-synthesized particles to be spherical with average diameters ~4 nm. Optical properties were measured by UV-Visible spectroscopy (UV-Vis), and the formation of alloy NPs was verified across all gold:silver ratios by a linear shift in the plasmon band maxima against alloy composition. The molar absorptivities of the NPs decreased non-linearly with increasing gold content from 2.0 x 108 M-1 cm-1 (fÉmax = 404 nm) for pure silver to 4.1 x 107 M-1 cm-1 (fÉmax = 511 nm) for pure gold. The NPs were immobilized onto transparent indium-tin oxide composite electrodes using layer-by-layer (LbL) deposition with poly(diallyldimethylammonium) acting as a cationic binder. The UV-Vis absorbance of the LbL film was used to calculate the surface coverage of alloy NPs on the electrode. Typical preparations had average NP surface coverages of 2.8 x 10-13 mol NPs/cm2 (~5% of cubic closest packing) with saturated films reaching ~20% of ccp for single-layer preparations (1.0 ~ 10-12 mol NPs/cm2). X-ray photoelectron spectroscopy confirmed the presence of alloy NPs in the LbL film and showed silver enrichment of the NP surfaces by ~9%. Irreversible oxidative dissolution (dealloying) of the less noble silver atoms from the NPs on LbL electrodes was performed by cyclic voltammetry (CV) in sulfuric acid. Alloy NPs with higher gold content required larger overpotentials for silver dealloying. Dealloying of the more-noble gold atoms from the alloy NPs was also achieved by CV in sodium chloride. The silver was oxidized first to cohesive silver chloride, and then gold dealloyed to soluble HAuCl4- at higher potentials. Silver oxidation was inhibited during the first oxidative scan, but subsequent cycles showed typical, reversible silver-to-silver chloride voltammetry. The potentials for both silver oxidation and gold dealloying also shifted to more oxidizing potentials with increasing gold content, and both processes converged for alloy NPs with >60% gold content. Charge-mediated electrochemistry of silver NPs immobilized in LbL films, using Fc(meOH) as the charge carrier, showed that 67% of the NPs were electrochemically inactive.
ContributorsStarr, Christopher A (Author) / Buttry, Daniel A (Thesis advisor) / Petuskey, William (Committee member) / Jones, Anne (Committee member) / Arizona State University (Publisher)
Created2014
151190-Thumbnail Image.png
Description
Mass spectrometric analysis requires that atoms from the sample be ionized in the gas phase. Secondary ion mass spectrometry achieves this by sputtering samples with an energetic primary ion beam. Several investigations of the sputtering and ionization process have been conducted. Oxygen is commonly used in secondary ion mass spectrometry

Mass spectrometric analysis requires that atoms from the sample be ionized in the gas phase. Secondary ion mass spectrometry achieves this by sputtering samples with an energetic primary ion beam. Several investigations of the sputtering and ionization process have been conducted. Oxygen is commonly used in secondary ion mass spectrometry (SIMS) to increase ion yields, but also can complicate the interpretation of SIMS analyses. An 18O implant in silicon has been used to quantify the oxygen concentration at the surface of sputtered silicon in order to study the dependence on oxygen of several sputtering and depth profile phenomena. The ion yield dependence of trace elements in silicon on the surface oxygen concentration is a function of the ionization potential of the element. The ion yield is high and unaffected by oxygen for elements with low ionization potential and ranges over several orders of magnitude for elements with high ionization potential. Depth resolution in sputter profiles has been shown to be degraded by the presence of oxygen, the mechanism of this effect has been investigated using an 18O implant to quantify oxygen levels and it is shown that the process does not appear to be a consequence of surface oxide formation. Molecular ions are a source of mass interference in SIMS analysis, and multiply charged atomic ion signals might be interference-free due to the possible instability of multiply-charged molecular ions. Sputtered SiH2+, AlH2+, BeH2+, Mo22+ and Mg22+ ions have been observed and appear surprisingly stable. The formation mechanism of some of these species has been explored.
ContributorsSobers, Richard Carlisle, Jr (Author) / Williams, Peter (Thesis advisor) / Hayes, Mark (Committee member) / Petuskey, William (Committee member) / Arizona State University (Publisher)
Created2012
149632-Thumbnail Image.png
Description
Many natural and synthetic quinones have shown biological and pharmacological activity. Some of them have also shown anticancer activity. Ubiquinone (CoQ10) which is a natural quinone, is a component of the electron transport chain and participates in generation of ATP (adenosine triphosphate). Cellular oxidative stress is key feature of many

Many natural and synthetic quinones have shown biological and pharmacological activity. Some of them have also shown anticancer activity. Ubiquinone (CoQ10) which is a natural quinone, is a component of the electron transport chain and participates in generation of ATP (adenosine triphosphate). Cellular oxidative stress is key feature of many neurodegenerative diseases such as Friedreich's ataxia, Alzheimer's disease and Parkinson's disease. The increased generation of reactive oxygen species damages cell membranes and leads to cell death. Analogues of ubiquinone in the form of pyrimidinols and pyridinols, were effective in protecting Friedreich's ataxia lymphocytes from oxidative stress- induced cell death. There were some structural features which could be identified that should be useful for the design of the analogues for cellular protection against oxidative stress. There are quinones such as doxorubicin, daunomycin and topopyrones which have anticancer activity. Here I evaluated topopyrone analogues which poison both topoisomerases I and II. The topopyrone analogues were lethal to human breast cancer cells, but these analogues were not as potent as camptothecin.
ContributorsRaghav, Nidhi (Author) / Hecht, Sidney M. (Thesis advisor) / Gould, Ian R (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2011
168732-Thumbnail Image.png
Description
G protein coupled receptors (GPCRs) mediate various of physiologicalactivities which makes them significant drug targets. Determination of atomic level structure of GPCRs facilitates the structure-based drug design. The most widely used method currently for solving GPCR structure is still protein crystallography especially lipidic cubic phase (LCP) crystallization. LCP could mimic the native environment of

G protein coupled receptors (GPCRs) mediate various of physiologicalactivities which makes them significant drug targets. Determination of atomic level structure of GPCRs facilitates the structure-based drug design. The most widely used method currently for solving GPCR structure is still protein crystallography especially lipidic cubic phase (LCP) crystallization. LCP could mimic the native environment of membrane protein which stable the membrane proteins. Traditional synchrotron source requires large size large size protein crystals (>30 micron) due to the radiation damage during data collection. However, acquiring large sized protein crystals is challenging and not guaranteed practically. In this study, a novel method was developed which combined LCP technology and micro-electron diffraction (MicroED) technology. LCP-MicroED technology was able to collect complete diffraction data sets from serval submicron protein crystals and deliver high resolution protein structures. This technology was first confirmed with soluble protein crystals, proteinase K and small molecule crystals, cholesterol. Furthermore, this novel method was applied to a human GPCR target, Î22- adrenergic receptor (Î22AR). The structure model was successfully built which proved the feasibility of applying LCP-MicroED method to GPCRs and other membrane proteins. Besides, in this research, a novel human GPCR target, human histamine 4 receptor(H4R) was studied. Different constructs were expressed, purified, and characterized. Some key residuals that affect ligand binding were confirmed.
ContributorsJing, Liang (Author) / Mazor, Yuval (Thesis advisor) / Mills, Jeremy (Committee member) / Wang, Xu (Committee member) / Arizona State University (Publisher)
Created2022
193383-Thumbnail Image.png
Description
For cold chain tracking systems, precision and versatility across varying time intervals and temperature ranges remain integral to effective application in clinical, commercial, and academic settings. Therefore, while electronic and chemistry/physics based cold chain tracking mechanisms currently exist, both have limitations that affect their application across various biospecimens and commercial

For cold chain tracking systems, precision and versatility across varying time intervals and temperature ranges remain integral to effective application in clinical, commercial, and academic settings. Therefore, while electronic and chemistry/physics based cold chain tracking mechanisms currently exist, both have limitations that affect their application across various biospecimens and commercial products, providing the initiative to develop a time temperature visual indicator system that resolves challenges with current cold chain tracking approaches. As a result, a permanganate/oxalic acid time temperature visual indicator system for cold chain tracking has been proposed. At thawing temperatures, the designed permanganate/oxalic acid reaction system undergoes a pink to colorless transition as permanganate, Mn(VII), is reduced to auto-catalytic Mn(II), while oxalate is oxidized to CO2. Therefore, when properly stored and vitrified or frozen, the proposed visual indicator remains pink, whereas exposure to thawing conditions will result in an eventual, time temperature dependent, designed color transition that characterizes compromised biospecimen integrity. To design visual indicator systems for targeted times at specific temperatures, absorbance spectroscopy was utilized to monitor permanganate kinetic curves by absorbance at 525 nm. As a result, throughout the outlined research, the following aims were demonstrated: (i) Design and functionality of 1x (0.5 mM KMnO4) visual indicator systems across various time intervals at temperatures ranging from 25°C to -20°C, (ii) Design and functionality of high concentration, 5x, visual indicator systems across varying targeted time intervals at temperatures ranging from 25°C to 0°C, (iii) Pre-activation stability and long-term stability of the proposed visual indicator systems.
ContributorsLjungberg, Emil (Author) / Borges, Chad (Thesis advisor) / Levitus, Marcia (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2024
193621-Thumbnail Image.png
Description
The integrin Mac-1 (αMβ2, CD11b/CD18) is an important adhesion receptorexpressed on macrophages and neutrophils. It plays a crucial role in phagocytosis, cell-cell fusion, and cell migration. αMβ2 is also the most promiscuous integrin with over 100 known ligands that span a broad range of physical and chemical attributes, many of which bind

The integrin Mac-1 (αMβ2, CD11b/CD18) is an important adhesion receptorexpressed on macrophages and neutrophils. It plays a crucial role in phagocytosis, cell-cell fusion, and cell migration. αMβ2 is also the most promiscuous integrin with over 100 known ligands that span a broad range of physical and chemical attributes, many of which bind to the inserted (I) domain from the αM subunit. The interaction of αMI-domain with cytokine pleiotrophin (PTN) were determine. PTN is a cationic protein known to induce Mac-1- mediated adhesion and migration in cells. The data showed that PTN’s interaction with αMI-domain contains both divalent cation-dependent and independent mechanisms. In particular, PTN’s N-terminal domain has weak interactions with the N/C-termini side of αMI-domain using a metal-independent mechanism. However, stronger interaction is achieved through the chelation of the divalent cation in the metal ion-dependent adhesion site of active αMI-domain by PTN’s acidic residues. Although many acidic residues in PTN can act as the chelator, active αMI-domain’s interaction with PTN’s E98 plays an especially important role. NOE, chemical shift perturbation (CSP) data, and mutagenesis studies showed residues near E98 are at the binding interface and the E98 mutation greatly reduced binding affinity between two proteins. Interestingly, the CSP and MD simulation data showed the binding interface can be supported by the interaction of PTN’s H95 with the acidic clusters D242, E244, and D273 from αMI-domain, while PTN’s E66 form electrostatic interaction with R208 and K245 from αMI-domain. The determined recognition motif of αMI-domain for its ligands is (H/R/K)xxE. The ability to accommodate the longer distance between E and (H, R, K) compared to the zwitterionic motif RGDii explained how αMβ2 can interact with a large repertoire of ligands and be versatile in its functional portfolio.
ContributorsNguyen, Hoa Thi Thanh (Author) / Wang, Xu (Thesis advisor) / Van Horn, Wade (Committee member) / Ugarova, Tatiana (Committee member) / Arizona State University (Publisher)
Created2024
156834-Thumbnail Image.png
Description
Exposure of blood plasma/serum (P/S) to thawed conditions, greater than -30°C, can produce biomolecular changes that misleadingly impact measurements of clinical markers within archived samples. Reported here is a low sample-volume, dilute-and-shoot, intact protein mass spectrometric assay of albumin proteoforms called “ΔS-Cys-Albumin” that quantifies cumulative exposure of archived P/S samples

Exposure of blood plasma/serum (P/S) to thawed conditions, greater than -30°C, can produce biomolecular changes that misleadingly impact measurements of clinical markers within archived samples. Reported here is a low sample-volume, dilute-and-shoot, intact protein mass spectrometric assay of albumin proteoforms called “ΔS-Cys-Albumin” that quantifies cumulative exposure of archived P/S samples to thawed conditions. The assay uses the fact that S-cysteinylation (oxidation) of albumin in P/S increases to a maximum value when exposed to temperatures greater than -30°C. The multi-reaction rate law that governs this albumin S-cysteinylation formation in P/S was determined and was shown to predict the rate of formation of S-cysteinylated albumin in P/S samples—a step that enables back-calculation of the time at which unknown P/S specimens have been exposed to room temperature. To emphasize the capability of this assay, a blind challenge demonstrated the ability of ΔS-Cys-Albumin to detect exposure of individual and grouped P/S samples to unfavorable storage conditions. The assay was also capable of detecting an anomaly in a case study of nominally pristine serum samples collected under NIH-sponsorship, demonstrating that empirical evidence is required to guarantee accurate knowledge of archived P/S biospecimen storage history.

The ex vivo glycation of human serum albumin was also investigated showing that P/S samples stored above their freezing point leads to significant increases in glycated albumin. These increases were found to occur within hours at room temperature, and within days at -20 °C. These increases continued over a period of 1-2 weeks at room temperature and over 200 days at -20 °C, ultimately resulting in a doubling of glycated albumin in both healthy and diabetic patients. It was also shown that samples stored at lower surface area-to-volume ratios or incubated under a nitrogen atmosphere experienced less rapid glucose adduction of albumin—suggesting a role for oxidative glycation in the ex vivo glycation of albumin.
ContributorsJeffs, Joshua W (Author) / Borges, Chad R (Thesis advisor) / Van Horn, Wade (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2018