Matching Items (117)
171394-Thumbnail Image.png
Description
Mediation analysis is integral to psychology, investigating human behavior’s causal mechanisms. The diversity of explanations for human behavior has implications for the estimation and interpretation of statistical mediation models. Individuals can have similar observed outcomes while undergoing different causal processes or different observed outcomes while receiving the same treatment. Researchers

Mediation analysis is integral to psychology, investigating human behavior’s causal mechanisms. The diversity of explanations for human behavior has implications for the estimation and interpretation of statistical mediation models. Individuals can have similar observed outcomes while undergoing different causal processes or different observed outcomes while receiving the same treatment. Researchers can employ diverse strategies when studying individual differences in multiple mediation pathways, including individual fit measures and analysis of residuals. This dissertation investigates the use of individual residuals and fit measures to identify individual differences in multiple mediation pathways. More specifically, this study focuses on mediation model residuals in a heterogeneous population in which some people experience indirect effects through one mediator and others experience indirect effects through a different mediator. A simulation study investigates 162 conditions defined by effect size and sample size for three proposed methods: residual differences, delta z, and generalized Cook’s distance. Results indicate that analogs of Type 1 error rates are generally acceptable for the method of residual differences, but statistical power is limited. Likewise, neither delta z nor gCd could reliably distinguish between contrasts that had true effects and those that did not. The outcomes of this study reveal the potential for statistical measures of individual mediation. However, limitations related to unequal subpopulation variances, multiple dependent variables, the inherent relationship between direct effects and unestimated indirect effects, and minimal contrast effects require more research to develop a simple method that researchers can use on single data sets.
ContributorsSmyth, Heather Lynn (Author) / MacKinnon, David (Thesis advisor) / Tein, Jenn-Yun (Committee member) / McNeish, Daniel (Committee member) / Grimm, Kevin (Committee member) / Arizona State University (Publisher)
Created2022
191019-Thumbnail Image.png
Description
This work focuses on a novel approach to combine electrical current with cyanobacterial technology, called microbial electrophotosynthesis (MEPS). It involves using genetically modified PSII-less Synechocystis PCC 6803 cells to avoid photoinhibition, a problem that hinders green energy. In the work, a cathodic electron delivery system is employed for growth and

This work focuses on a novel approach to combine electrical current with cyanobacterial technology, called microbial electrophotosynthesis (MEPS). It involves using genetically modified PSII-less Synechocystis PCC 6803 cells to avoid photoinhibition, a problem that hinders green energy. In the work, a cathodic electron delivery system is employed for growth and synthesis. Photoinhibition leads to the dissipation energy and lower yield, and is a major obstacle to preventing green energy from competing with fossil fuels. However, the urgent need for alternative energy sources is driven by soaring energy consumption and rising atmospheric carbon dioxide levels. When developed, MEPS can contribute to a carbon capture technology while helping with energy demands. It is thought that if PSII electron flux can be replaced with an alternative source photosynthesis could be enhanced for more effective production. MEPS has the potential to address these challenges by serving as a carbon capture technology while meeting energy demands. The idea is to replace PSII electron flux with an alternative source, which can be enhanced for higher yields in light intensities not tolerated with PSII. This research specifically focuses on creating the initiation of electron flux between the cathode and the MEPS cells while controlling and measuring the system in real time. The successful proof-of-concept work shows that MEPS can indeed generate high-light-dependent current at intensities up to 2050 µmol photons m^‒2 s^‒1, delivering 113 µmol electrons h^‒1 mg-chl^‒1. The results were further developed to characterize redox tuning for electron delivery of flux to the photosynthetic electron transport chain and redox-based kinetic analysis to model the limitations of the MEPS system.
ContributorsLewis, Christine Michelle (Author) / Torres, César I (Thesis advisor) / Fromme, Petra (Thesis advisor) / Woodbury, Neal (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2023
187427-Thumbnail Image.png
Description
The continued rise of temperatures and extreme heat events globally is contributing to increases in mortality and morbidity in every region of the world. Urban areas are experiencing the combined effects of anthropogenic climate change and the urban heat island effect, exacerbating the risks associated with heat for urban residents.

The continued rise of temperatures and extreme heat events globally is contributing to increases in mortality and morbidity in every region of the world. Urban areas are experiencing the combined effects of anthropogenic climate change and the urban heat island effect, exacerbating the risks associated with heat for urban residents. In response, cities must make every effort to adapt, pursuing engagement in high-quality planning processes and implementing robust sets of strategies to mitigate and manage the heat. Cities are shaped by networks of plans, however, the process of systematically evaluating these plans has focused on individual plans or plan types when assessing their quality. This study combines qualitative plan quality evaluation and semi-structured interviews to assess how Vienna’s network of plans addresses heat. Two clear divides emerge when analyzing the plan network; direction-setting principles are included more often than others, and mitigation strategies are more prevalent than management strategies. These results, which are consistent across the broader plan quality evaluation literature, illuminate a clear path for Vienna to continuously improve their planning process and effectively respond to heat.
ContributorsLeyba, Bryan (Author) / Meerow, Sara (Thesis advisor) / Damyanovic, Doris (Committee member) / Hondula, David (Committee member) / Arizona State University (Publisher)
Created2023
187681-Thumbnail Image.png
Description
Food insecurity is an economic and social condition involving limited or uncertain access to food. The problem of food insecurity in communities is influenced by economic conditions, food deserts, and barriers to accessing healthy food. Individuals experiencing food insecurity often endure concurrent problems of financial instability, hunger, and poor mental

Food insecurity is an economic and social condition involving limited or uncertain access to food. The problem of food insecurity in communities is influenced by economic conditions, food deserts, and barriers to accessing healthy food. Individuals experiencing food insecurity often endure concurrent problems of financial instability, hunger, and poor mental and physical health. Public and non-profit services in the U.S., such as the federally supported Supplemental Nutrition Assistance Program (SNAP) and community food banks, provide food-related assistance to individuals who are at a high risk of experiencing food insecurity. Unfortunately, many individuals who qualify for these services still experience food insecurity due to barriers preventing them from accessing food, which may include inadequate finances, transportation, skills, and information. Effective approaches for removing barriers that prevent individuals from accessing food are needed to mitigate the increased risk of hunger, nutritional deficiencies, and chronic disease among vulnerable populations. This dissertation tested a novel food insecurity intervention using informational nudges to promote food security through the elimination of information barriers to accessing food. The intervention used in this mixed-methods feasibility study consisted of informational nudges in the form of weekly text messages that were sent to food pantry clients experiencing food insecurity. The study aims were to test the efficacy and acceptability of the intervention by examining whether the informational nudges could enhance food pantry utilization, increase SNAP registration, and promote food security. Quantitative study results showed a lower prevalence of food insecurity in the intervention group than the control group. Qualitative findings revealed how the intervention group found the text messages to be helpful and informative. These study findings can enhance future food insecurity interventions aiming to eliminate barriers that prevent individuals who are food insecure from accessing healthy food.
ContributorsRoyer, Michael F. (Author) / Wharton, Christopher (Thesis advisor) / Buman, Matthew (Committee member) / Der Ananian, Cheryl (Committee member) / MacKinnon, David (Committee member) / Ohri-Vachaspati, Punam (Committee member) / Arizona State University (Publisher)
Created2023
156515-Thumbnail Image.png
Description
The fundamental photophysics of fluorescent probes must be understood when the probes are used in biological applications. The photophysics of BODIPY dyes inside polymeric micelles and rhodamine dyes covalently linked to proteins were studied. Hydrophobic boron-dipyrromethene (BODIPY) dyes were noncovalently encapsulated inside polymeric micelles. Absorbance and fluorescence measurements were employed

The fundamental photophysics of fluorescent probes must be understood when the probes are used in biological applications. The photophysics of BODIPY dyes inside polymeric micelles and rhodamine dyes covalently linked to proteins were studied. Hydrophobic boron-dipyrromethene (BODIPY) dyes were noncovalently encapsulated inside polymeric micelles. Absorbance and fluorescence measurements were employed to study the photophysics of these BODIPY dyes in the micellar environments. Amphiphilic polymers with a hydrophobic character and low Critical Micelle Concentration (CMC) protected BODIPYS from the aqueous environment. Moderate dye loading conditions did not result in ground-state dimerization, and only fluorescence lifetimes and brightnesses were affected. However, amphiphilic polymers with a hydrophilic character and high CMC did not protect the BODIPYS from the aqueous environment with concomitant ground-state dimerization and quenching of the fluorescence intensity, lifetime, and brightnesses even at low dye loading conditions. At the doubly-labeled interfaces of Escherichia coli (E. coli) DNA processivity β clamps, the interchromophric interactions of four rhodamine dyes were studied: tetramethylrhodamine (TMR), TMR C6, Alexa Fluor 488, and Alexa Fluor 546. Absorbance and fluorescence measurements were performed on doubly-labeled β clamps with singly-labeled β clamps and free dyes as controls. The absorbance measurements revealed that both TMR and TMR C6 readily formed H-dimers (static quenching) at the doubly-labeled interfaces of the β clamps. However, the TMR with a longer linker (TMR C6) also displayed a degree of dynamic quenching. For Alexa Fluor 546 and Alexa Fluor 488, there were no clear signs of dimerization in the absorbance scans. However, the fluorescence properties (fluorescence intensity, lifetime, and anisotropy) of the Alexa Fluor dyes significantly changed when three methodologies were employed to disrupt the doubly-labeled interfaces: 1) the addition of sodium dodecyl sulfate (SDS) detergent to denature the proteins, 2) the addition of clamp loader (γ complex) to open one of the two interfaces, and 3) the use of subunit exchange to decrease the number of dyes per interface. These fluorescence measurements indicated that for the Alexa Fluor dyes, other interchromophoric interactions were present such as dynamic quenching and homo-Förster Resonance Energy Transfer (homo-FRET).
ContributorsDonaphon, Bryan Matthew (Author) / Levitus, Marcia (Thesis advisor) / Van Horn, Wade (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2018
157213-Thumbnail Image.png
Description
The highly predictable structural and thermodynamic behavior of deoxynucleic acid (DNA) and ribonucleic acid (RNA) have made them versatile tools for creating artificial nanostructures over broad range. Moreover, DNA and RNA are able to interact with biological ligand as either synthetic aptamers or natural components, conferring direct biological functions to

The highly predictable structural and thermodynamic behavior of deoxynucleic acid (DNA) and ribonucleic acid (RNA) have made them versatile tools for creating artificial nanostructures over broad range. Moreover, DNA and RNA are able to interact with biological ligand as either synthetic aptamers or natural components, conferring direct biological functions to the nucleic acid devices. The applications of nucleic acids greatly relies on the bio-reactivity and specificity when applied to highly complexed biological systems.

This dissertation aims to 1) develop new strategy to identify high affinity nucleic acid aptamers against biological ligand; and 2) explore highly orthogonal RNA riboregulators in vivo for constructing multi-input gene circuits with NOT logic. With the aid of a DNA nanoscaffold, pairs of hetero-bivalent aptamers for human alpha thrombin were identified with ultra-high binding affinity in femtomolar range with displaying potent biological modulations for the enzyme activity. The newly identified bivalent aptamers enriched the aptamer tool box for future therapeutic applications in hemostasis, and also the strategy can be potentially developed for other target molecules. Secondly, by employing a three-way junction structure in the riboregulator structure through de-novo design, we identified a family of high-performance RNA-sensing translational repressors that down-regulates gene translation in response to cognate RNAs with remarkable dynamic range and orthogonality. Harnessing the 3WJ repressors as modular parts, we integrate them into biological circuits that execute universal NAND and NOR logic with up to four independent RNA inputs in Escherichia coli.
ContributorsZhou, Yu (Ph.D.) (Author) / Yan, Hao (Thesis advisor) / Green, Alexander (Thesis advisor) / Woodbury, Neal (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2019
157544-Thumbnail Image.png
Description
Longitudinal recursive partitioning (LRP) is a tree-based method for longitudinal data. It takes a sample of individuals that were each measured repeatedly across time, and it splits them based on a set of covariates such that individuals with similar trajectories become grouped together into nodes. LRP does this by fitting

Longitudinal recursive partitioning (LRP) is a tree-based method for longitudinal data. It takes a sample of individuals that were each measured repeatedly across time, and it splits them based on a set of covariates such that individuals with similar trajectories become grouped together into nodes. LRP does this by fitting a mixed-effects model to each node every time that it becomes partitioned and extracting the deviance, which is the measure of node purity. LRP is implemented using the classification and regression tree algorithm, which suffers from a variable selection bias and does not guarantee reaching a global optimum. Additionally, fitting mixed-effects models to each potential split only to extract the deviance and discard the rest of the information is a computationally intensive procedure. Therefore, in this dissertation, I address the high computational demand, variable selection bias, and local optimum solution. I propose three approximation methods that reduce the computational demand of LRP, and at the same time, allow for a straightforward extension to recursive partitioning algorithms that do not have a variable selection bias and can reach the global optimum solution. In the three proposed approximations, a mixed-effects model is fit to the full data, and the growth curve coefficients for each individual are extracted. Then, (1) a principal component analysis is fit to the set of coefficients and the principal component score is extracted for each individual, (2) a one-factor model is fit to the coefficients and the factor score is extracted, or (3) the coefficients are summed. The three methods result in each individual having a single score that represents the growth curve trajectory. Therefore, now that the outcome is a single score for each individual, any tree-based method may be used for partitioning the data and group the individuals together. Once the individuals are assigned to their final nodes, a mixed-effects model is fit to each terminal node with the individuals belonging to it.

I conduct a simulation study, where I show that the approximation methods achieve the goals proposed while maintaining a similar level of out-of-sample prediction accuracy as LRP. I then illustrate and compare the methods using an applied data.
ContributorsStegmann, Gabriela (Author) / Grimm, Kevin (Thesis advisor) / Edwards, Michael (Committee member) / MacKinnon, David (Committee member) / McNeish, Daniel (Committee member) / Arizona State University (Publisher)
Created2019
157646-Thumbnail Image.png
Description
There is a need to reinvent evidence-based interventions (EBIs) for pediatric anxiety problems to better address the demands of real-word service delivery settings and achieve public health impact. The time- and resource-intensive nature of most EBIs for youth anxiety has frequently been noted as a barrier to the utilization of

There is a need to reinvent evidence-based interventions (EBIs) for pediatric anxiety problems to better address the demands of real-word service delivery settings and achieve public health impact. The time- and resource-intensive nature of most EBIs for youth anxiety has frequently been noted as a barrier to the utilization of EBIs in community settings, leading to increased attention towards exploring the viability of briefer, more accessible protocols. Principally, this research reports between-group effect sizes from brief-interventions targeting pediatric anxiety and classifies each as well-established, probably efficacious, possibly efficacious, experimental, or questionable. brief interventions yielded an overall mean effect size of 0.19 on pediatric anxiety outcomes from pre to post. Effect sizes varied significantly by level of intervention: Pre to post-intervention effects were strongest for brief-treatments (0.35), followed by brief-targeted prevention (0.22), and weakest for brief-universal prevention (0.09). No participant or other intervention characteristic emerged as significant moderators of effect sizes. In terms of standard of evidence, one brief intervention is well-established, and five are probably efficacious, with most drawing on cognitive and behavioral change procedures and/or family systems models. At this juncture, the minimal intervention needed for clinical change in pediatric anxiety points to in-vivo exposures for specific phobias (~3 hours), cognitive-behavioral therapy (CBT) with social skills training (~3 hours), and CBT based parent training (~6 hours, eight digital modules with clinician support). This research concludes with a discussion on limitations to available brief EBIs, practice guidelines, and future research needed to capitalize on the viability of briefer protocols in enhancing access to, and impact of, evidence-based care in the real-world.
ContributorsStoll, Ryan (Author) / Pina, Armando A. (Thesis advisor) / Gonzales, Nancy (Committee member) / MacKinnon, David (Committee member) / Perez, Marisol (Committee member) / Arizona State University (Publisher)
Created2019
154839-Thumbnail Image.png
Description
Positive alcohol outcome expectancies (AOEs) are consistent longitudinal predictors of later alcohol use; however, exclusion of solitary drinking contexts in the measurement of AOEs may have resulted in an underestimation of the importance of low arousal positive (LAP) effects. The current study aimed to clarify the literature on the association

Positive alcohol outcome expectancies (AOEs) are consistent longitudinal predictors of later alcohol use; however, exclusion of solitary drinking contexts in the measurement of AOEs may have resulted in an underestimation of the importance of low arousal positive (LAP) effects. The current study aimed to clarify the literature on the association between AOEs and drinking outcomes by examining the role of drinking context in AOE measurement. Further, exclusion of contextual influences has also limited understanding of the unique effects of AOEs relative to subjective responses (SR) to alcohol. The present study addressed this important question by exploring relations between AOEs and SR when drinking context was held constant across parallel measures of these constructs. Understanding which of these factors drives relations between alcohol effects and drinking behavior has important implications for intervention. After conducting confirmatory factor analysis (CFA) and tests of measurement invariance for the AOE and SR measures, 4 aims collectively examined the role of context in reporting of AOEs (Aims 1 and 2), the extent to which context specific AOEs uniquely relate to drinking outcomes (Aim 3), and the importance of context effects on correspondence between AOEs and SR (Aim 4). Results of Aims 1 and 2 demonstrated that participants are imagining contexts when reporting on measures of AOEs that do not specify the context, and found significant mean differences in high and low arousal positive AOEs across contexts. Contrary to the hypotheses of Aim 3, context-specific AOEs were not significantly associated with drinking behavior. Results of Aim 4 indicated that while LAP AOEs for both unspecified and solitary contexts were associated with LAP SR in a solitary setting, unspecified context AOEs had a stronger relation than the solitary context AOEs. No significant relations between high arousal positive (HAP) AOEs and HAP SR emerged. The findings suggest that further investigation of the relation between context-specific AOEs and drinking outcomes/SR is warranted. Future studies of these hypotheses in samples with a wider range of drinking behavior, or at different stages of alcohol involvement, will elucidate whether mean level differences in context specific AOEs are important in understanding alcohol related outcomes.
ContributorsScott, Caitlin (Author) / Corbin, William (Thesis advisor) / MacKinnon, David (Committee member) / Barrera, Manuel (Committee member) / Chassin, Laurie (Committee member) / Arizona State University (Publisher)
Created2016
153904-Thumbnail Image.png
Description
Recent advances in hierarchical or multilevel statistical models and causal inference using the potential outcomes framework hold tremendous promise for mock and real jury research. These advances enable researchers to explore how individual jurors can exert a bottom-up effect on the jury’s verdict and how case-level features can exert a

Recent advances in hierarchical or multilevel statistical models and causal inference using the potential outcomes framework hold tremendous promise for mock and real jury research. These advances enable researchers to explore how individual jurors can exert a bottom-up effect on the jury’s verdict and how case-level features can exert a top-down effect on a juror’s perception of the parties at trial. This dissertation explains and then applies these technical advances to a pre-existing mock jury dataset to provide worked examples in an effort to spur the adoption of these techniques. In particular, the paper introduces two new cross-level mediated effects and then describes how to conduct ecological validity tests with these mediated effects. The first cross-level mediated effect, the a1b1 mediated effect, is the juror level mediated effect for a jury level manipulation. The second cross-level mediated effect, the a2bc mediated effect, is the unique contextual effect that being in a jury has on the individual the juror. When a mock jury study includes a deliberation versus non-deliberation manipulation, the a1b1 can be compared for the two conditions, enabling a general test of ecological validity. If deliberating in a group generally influences the individual, then the two indirect effects should be significantly different. The a2bc can also be interpreted as a specific test of how much changes in jury level means of this specific mediator effect juror level decision-making.
ContributorsLovis-McMahon, David (Author) / Schweitzer, Nicholas (Thesis advisor) / Saks, Michael (Thesis advisor) / Salerno, Jessica (Committee member) / MacKinnon, David (Committee member) / Arizona State University (Publisher)
Created2015