Matching Items (191)
136820-Thumbnail Image.png
Description
Translating research has been a goal of the Department of Health and Human Services since 1999. Through two years of iteration and interview with our community members, we have collected insights into the barriers to accomplishing this goal. Liberating Science is a think-tank of researchers and scientists who seek to

Translating research has been a goal of the Department of Health and Human Services since 1999. Through two years of iteration and interview with our community members, we have collected insights into the barriers to accomplishing this goal. Liberating Science is a think-tank of researchers and scientists who seek to create a more transparent process to accelerate innovation starting with behavioral health research.
ContributorsRaghani, Pooja Sioux (Author) / Hekler, Eric (Thesis director) / Buman, Matthew (Committee member) / Pruthi, Virgilia Kaur (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Biomedical Informatics Program (Contributor)
Created2014-05
137043-Thumbnail Image.png
Description
Over the last decade, the ability to track daily activity through step counting devices has undergone major changes. Advanced technologies have brought about new step counting devices and new form factors. The validity of these new devices is not fully known. The purpose of this study was to

Over the last decade, the ability to track daily activity through step counting devices has undergone major changes. Advanced technologies have brought about new step counting devices and new form factors. The validity of these new devices is not fully known. The purpose of this study was to validate and compare the step counting accuracy of commercially available hip- and wrist-worn accelerometers. A total of 185 participants (18-64 years of age) were analyzed for this study, with the sample composed nearly evenly of each gender (53.5% female) and BMI classification (33% overweight, 31.9% obese). Each participant wore five devices including hip-worn Omron HJ-112 and Fitbit One, and wrist-worn Fitbit Flex, Nike Fuelband, and Jawbone UP. A range of activities (some constant among all participants, some randomly assigned) were then used to accumulate steps including walking on a hard surface for 400m, treadmill walking/running at 2mph, 3mph, and ≥5mph, walking up five flights of stairs, and walking down five flights of stairs. To validate the accuracy of each device, steps were also counted by direct observation. Results showed high concordance with directly observed steps for all devices (intraclass correlation coefficient range: 0.86 to 0.99), with hip-worn devices more accurate than wrist-worn devices. Absolute percent error values were lower among hip-worn devices and at faster walking/running speeds. Nike Fuelband consistently was the worst performing of all test devices. These results are important because as pedometers become more complex, it is important that they remain accurate throughout a variety of activities. Future directions for this research are to explore the validity of these devices in free-living settings and among younger and older populations.
ContributorsKramer, Cody Lee (Author) / Buman, Matthew (Thesis director) / Hoffner, Kristin (Committee member) / Marshall, Simon (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2014-05
141473-Thumbnail Image.png
Description

Critical flicker fusion thresholds (CFFTs) describe when quick amplitude modulations of a light source become undetectable as the frequency of the modulation increases and are thought to underlie a number of visual processing skills, including reading. Here, we compare the impact of two vision-training approaches, one involving contrast sensitivity training

Critical flicker fusion thresholds (CFFTs) describe when quick amplitude modulations of a light source become undetectable as the frequency of the modulation increases and are thought to underlie a number of visual processing skills, including reading. Here, we compare the impact of two vision-training approaches, one involving contrast sensitivity training and the other directional dot-motion training, compared to an active control group trained on Sudoku. The three training paradigms were compared on their effectiveness for altering CFFT. Directional dot-motion and contrast sensitivity training resulted in significant improvement in CFFT, while the Sudoku group did not yield significant improvement. This finding indicates that dot-motion and contrast sensitivity training similarly transfer to effect changes in CFFT. The results, combined with prior research linking CFFT to high-order cognitive processes such as reading ability, and studies showing positive impact of both dot-motion and contrast sensitivity training in reading, provide a possible mechanistic link of how these different training approaches impact reading abilities.

ContributorsZhou, Tianyou (Author) / Nanez, Jose (Author) / Zimmerman, Daniel (Author) / Holloway, Steven (Author) / Seitz, Aaron (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2016-10-26
141474-Thumbnail Image.png
Description

Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no

Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no classifiers have been strictly validated for independent cohorts. Here we overcome these difficulties by developing a novel machine-learning algorithm that identifies a small number of FCs that separates ASD versus TD. The classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a remarkable degree of generalization for two independent validation cohorts in the USA and Japan. The developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls but moderately distinguishes patients with schizophrenia from their controls. The results leave open the viable possibility of exploring neuroimaging-based dimensions quantifying the multiple-disorder spectrum.

ContributorsYahata, Noriaki (Author) / Morimoto, Jun (Author) / Hashimoto, Ryuichiro (Author) / Lisi, Giuseppe (Author) / Shibata, Kazuhisa (Author) / Kawakubo, Yuki (Author) / Kuwabara, Hitoshi (Author) / Kuroda, Miho (Author) / Yamada, Takashi (Author) / Megumi, Fukuda (Author) / Imamizu, Hiroshi (Author) / Nanez, Jose (Author) / Takahashi, Hidehiko (Author) / Okamoto, Yasumasa (Author) / Kasai, Kiyoto (Author) / Kato, Nobumasa (Author) / Sasaki, Yuka (Author) / Watanabe, Takeo (Author) / Kawato, Mitsuo (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2016-04-14
149368-Thumbnail Image.png
Description
In oxygenic photosynthesis, Photosystem I (PSI) and Photosystem II (PSII) are two transmembrane protein complexes that catalyze the main step of energy conversion; the light induced charge separation that drives an electron transfer reaction across the thylakoid membrane. Current knowledge of the structure of PSI and PSII is based on

In oxygenic photosynthesis, Photosystem I (PSI) and Photosystem II (PSII) are two transmembrane protein complexes that catalyze the main step of energy conversion; the light induced charge separation that drives an electron transfer reaction across the thylakoid membrane. Current knowledge of the structure of PSI and PSII is based on three structures: PSI and PSII from the thermophilic cyanobacterium Thermosynechococcus elonagatus and the PSI/light harvesting complex I (PSI-LHCI) of the plant, Pisum sativum. To improve the knowledge of these important membrane protein complexes from a wider spectrum of photosynthetic organisms, photosynthetic apparatus of the thermo-acidophilic red alga, Galdieria sulphuraria and the green alga, Chlamydomonas reinhardtii were studied. Galdieria sulphuraria grows in extreme habitats such as hot sulfur springs with pH values from 0 to 4 and temperatures up to 56°C. In this study, both membrane protein complexes, PSI and PSII were isolated from this organism and characterized. Ultra-fast fluorescence spectroscopy and electron microscopy studies of PSI-LHCI supercomplexes illustrate how this organism has adapted to low light environmental conditions by tightly coupling PSI and LHC, which have not been observed in any organism so far. This result highlights the importance of structure-function relationships in different ecosystems. Galdieria sulphuraria PSII was used as a model protein to show the amenability of integral membrane proteins to top-down mass spectrometry. G.sulphuraria PSII has been characterized with unprecedented detail with identification of post translational modification of all the PSII subunits. This study is a technology advancement paving the way for the usage of top-down mass spectrometry for characterization of other large integral membrane proteins. The green alga, Chlamydomonas reinhardtii is widely used as a model for eukaryotic photosynthesis and results from this organism can be extrapolated to other eukaryotes, especially agricultural crops. Structural and functional studies on the PSI-LHCI complex of C.reinhardtii grown under high salt conditions were studied using ultra-fast fluorescence spectroscopy, circular dichroism and MALDI-TOF. Results revealed that pigment-pigment interactions in light harvesting complexes are disrupted and the acceptor side (ferredoxin docking side) is damaged under high salt conditions.
ContributorsThangaraj, Balakumar (Author) / Fromme, Petra (Thesis advisor) / Shock, Everett (Committee member) / Chen, Julian (Committee member) / Arizona State University (Publisher)
Created2010
Description

Human activity recognition is the task of identifying a person’s movement from sensors in a wearable device, such as a smartphone, smartwatch, or a medical-grade device. A great method for this task is machine learning, which is the study of algorithms that learn and improve on their own with

Human activity recognition is the task of identifying a person’s movement from sensors in a wearable device, such as a smartphone, smartwatch, or a medical-grade device. A great method for this task is machine learning, which is the study of algorithms that learn and improve on their own with the help of massive amounts of useful data. These classification models can accurately classify activities with the time-series data from accelerometers and gyroscopes. A significant way to improve the accuracy of these machine learning models is preprocessing the data, essentially augmenting data to make the identification of each activity, or class, easier for the model. <br/>On this topic, this paper explains the design of SigNorm, a new web application which lets users conveniently transform time-series data and view the effects of those transformations in a code-free, browser-based user interface. The second and final section explains my take on a human activity recognition problem, which involves comparing a preprocessed dataset to an un-augmented one, and comparing the differences in accuracy using a one-dimensional convolutional neural network to make classifications.

ContributorsLi, Vincent (Author) / Turaga, Pavan (Thesis director) / Buman, Matthew (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135927-Thumbnail Image.png
Description
Surrounded by a developmental boom in downtown Phoenix, Roosevelt Row fights to maintain the local art influence and historic character. An earthy community of street artists, coffee drinkers, band tees, nose rings, vinyl collectors and rolled denim, the people are facing dramatic urbanization. The hum of drills, hammers, cranes and

Surrounded by a developmental boom in downtown Phoenix, Roosevelt Row fights to maintain the local art influence and historic character. An earthy community of street artists, coffee drinkers, band tees, nose rings, vinyl collectors and rolled denim, the people are facing dramatic urbanization. The hum of drills, hammers, cranes and alarms sound throughout the viscidity, echoing the construction of a new era downtown. In the interest of better understanding the developmental process, resident needs and community, this research project evaluates successful public spaces and similar downtown areas in the United States, synthesized their elements of prosperity in comparison to general attributes of quality public spaces, and implemented the concepts and ideas into Roosevelt Row. This provided the researcher with knowledge of quality public spaces, why public space is important, and how placemaking is routinely accomplished. This also equipped the researcher with the tools to participate in ethnography and collect observational data to learn about Roosevelt Row. The researcher then combined learned material with what she observed on the Row, to condense the artists' district developmental needs into nine proposals for bettering the Row in the immediate, near and long-term future. The study begs to answer the question: is Roosevelt Row a Place or a place? Observation, residential and visitor engagement with the space; locality, pleasurability, inclusiveness and safety of the public spaces; and relationship between residents and quality of space all contribute to the space's qualifications. While Roosevelt Row has the potential and assets to become a Place, especially if the nine proposals are implemented. However, at the time of research, the space is between place and Place.
Created2015-12
131058-Thumbnail Image.png
Description
Tempe Town Lake is the site of fifteen years’ worth of chemical data collection by ASU researchers. In 2018 the dataSONDE, an instrument capable of measuring different water quality parameters every thirty minutes for a month at a time was installed in the lake. The SONDE has the potential to

Tempe Town Lake is the site of fifteen years’ worth of chemical data collection by ASU researchers. In 2018 the dataSONDE, an instrument capable of measuring different water quality parameters every thirty minutes for a month at a time was installed in the lake. The SONDE has the potential to completely reduce the need for sampling by hand. Before the SONDE becomes the sole means of gathering data, it is important to verify its accuracy. In this study, the measurements gathered by the SONDE (pH, dissolved oxygen, temperature, conductivity and colored dissolved organic matter) were compared to measurements gathered using the verified methods from the past fifteen years.
ContributorsSauer, Elinor Rayne (Author) / Hartnett, Hilairy (Thesis director) / Glaser, Donald (Committee member) / Shock, Everett (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
130366-Thumbnail Image.png
Description
Background
The purpose of this study is to determine the feasibility of three widely used wearable sensors in research settings for 24 h monitoring of sleep, sedentary, and active behaviors in middle-aged women.
Methods
Participants were 21 inactive, overweight (M Body Mass Index (BMI) = 29.27 ± 7.43) women, 30 to 64 years (M = 45.31 ± 9.67). Women were instructed

Background
The purpose of this study is to determine the feasibility of three widely used wearable sensors in research settings for 24 h monitoring of sleep, sedentary, and active behaviors in middle-aged women.
Methods
Participants were 21 inactive, overweight (M Body Mass Index (BMI) = 29.27 ± 7.43) women, 30 to 64 years (M = 45.31 ± 9.67). Women were instructed to wear each sensor on the non-dominant hip (ActiGraph GT3X+), wrist (GENEActiv), or upper arm (BodyMedia SenseWear Mini) for 24 h/day and record daily wake and bed times for one week over the course of three consecutive weeks. Women received feedback about their daily physical activity and sleep behaviors. Feasibility (i.e., acceptability and demand) was measured using surveys, interviews, and wear time.
Results
Women felt the GENEActiv (94.7 %) and SenseWear Mini (90.0 %) were easier to wear and preferred the placement (68.4, 80 % respectively) as compared to the ActiGraph (42.9, 47.6 % respectively). Mean wear time on valid days was similar across sensors (ActiGraph: M = 918.8 ± 115.0 min; GENEActiv: M = 949.3 ± 86.6; SenseWear: M = 928.0 ± 101.8) and well above other studies using wake time only protocols. Informational feedback was the biggest motivator, while appearance, comfort, and inconvenience were the biggest barriers to wearing sensors. Wear time was valid on 93.9 % (ActiGraph), 100 % (GENEActiv), and 95.2 % (SenseWear) of eligible days. 61.9, 95.2, and 71.4 % of participants had seven valid days of data for the ActiGraph, GENEActiv, and SenseWear, respectively.
Conclusion
Twenty-four hour monitoring over seven consecutive days is a feasible approach in middle-aged women. Researchers should consider participant acceptability and demand, in addition to validity and reliability, when choosing a wearable sensor. More research is needed across populations and study designs.
ContributorsHuberty, Jennifer (Author) / Ehlers, Diane (Author) / Kurka, Jonathan (Author) / Ainsworth, Barbara (Author) / Buman, Matthew (Author) / College of Health Solutions (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-07-30
130368-Thumbnail Image.png
Description
Background
Weight gain during the childbearing years and failure to lose pregnancy weight after birth contribute to the development of obesity in postpartum Latinas.
Methods
Madres para la Salud [Mothers for Health] was a 12-month, randomized controlled trial exploring a social support intervention with moderate-intensity physical activity (PA) seeking to effect changes in

Background
Weight gain during the childbearing years and failure to lose pregnancy weight after birth contribute to the development of obesity in postpartum Latinas.
Methods
Madres para la Salud [Mothers for Health] was a 12-month, randomized controlled trial exploring a social support intervention with moderate-intensity physical activity (PA) seeking to effect changes in body fat, fat tissue inflammation, and depression symptoms in sedentary postpartum Latinas. This report describes the efficacy of the Madres intervention.
Results
The results show that while social support increased during the active intervention delivery, it declined to pre-intervention levels by the end of the intervention. There were significant achievements in aerobic and total steps across the 12 months of the intervention, and declines in body adiposity assessed with bioelectric impedance.
Conclusions
Social support from family and friends mediated increases in aerobic PA resulting in decrease in percent body fat.
Created2014-09-19