Matching Items (519)
151604-Thumbnail Image.png
Description
Purpose: The purpose of this study was to examine the acute effects of two novel intermittent exercise prescriptions on glucose regulation and ambulatory blood pressure. Methods: Ten subjects (5 men and 5 women, ages 31.5 ± 5.42 yr, height 170.38 ± 9.69 cm and weight 88.59 ± 18.91 kg) participated

Purpose: The purpose of this study was to examine the acute effects of two novel intermittent exercise prescriptions on glucose regulation and ambulatory blood pressure. Methods: Ten subjects (5 men and 5 women, ages 31.5 ± 5.42 yr, height 170.38 ± 9.69 cm and weight 88.59 ± 18.91 kg) participated in this four-treatment crossover trial. All subjects participated in four trials, each taking place over three days. On the evening of the first day, subjects were fitted with a continuous glucose monitor (CGM). On the second day, subjects were fitted with an ambulatory blood pressure monitor (ABP) and underwent one of the following four conditions in a randomized order: 1) 30-min: 30 minutes of continuous exercise at 60 - 70% VO2peak; 2) Mod 2-min: twenty-one 2-min bouts of walking at 3 mph performed once every 20 minutes; 3) HI 2-min: eight 2-min bouts of walking at maximal incline performed once every hour; 4) Control: a no exercise control condition. On the morning of the third day, the CGM and ABP devices were removed. All meals were standardized during the study visits. Linear mixed models were used to compare mean differences in glucose and blood pressure regulation between the four trials. Results: Glucose concentrations were significantly lower following the 30-min (91.1 ± 14.9 mg/dl), Mod 2-min (93.7 ± 19.8 mg/dl) and HI 2-min (96.1 ± 16.4 mg/dl) trials as compared to the Control (101.1 ± 20 mg/dl) (P < 0.001 for all three comparisons). The 30-min trial was superior to the Mod 2-min, which was superior to the HI 2-min trial in lowering blood glucose levels (P < 0.001 and P = 0.003 respectively). Only the 30-min trial was effective in lowering systolic ABP (124 ± 12 mmHg) as compared to the Control trial (127 ± 14 mmHg; P < 0.001) for up to 11 hours post exercise. Conclusion: Performing frequent short (i.e., 2 minutes) bouts of moderate or high intensity exercise may be a viable alternative to traditional continuous exercise in improving glucose regulation. However, 2-min bouts of exercise are not effective in reducing ambulatory blood pressure in healthy adults.
ContributorsBhammar, Dharini Mukeshkumar (Author) / Gaesser, Glenn A (Thesis advisor) / Shaibi, Gabriel (Committee member) / Buman, Matthew (Committee member) / Swan, Pamela (Committee member) / Lee, Chong (Committee member) / Arizona State University (Publisher)
Created2013
151620-Thumbnail Image.png
Description
DNA has recently emerged as an extremely promising material to organize molecules on nanoscale. The reliability of base recognition, self-assembling behavior, and attractive structural properties of DNA are of unparalleled value in systems of this size. DNA scaffolds have already been used to organize a variety of molecules including nanoparticles

DNA has recently emerged as an extremely promising material to organize molecules on nanoscale. The reliability of base recognition, self-assembling behavior, and attractive structural properties of DNA are of unparalleled value in systems of this size. DNA scaffolds have already been used to organize a variety of molecules including nanoparticles and proteins. New protein-DNA bio-conjugation chemistries make it possible to precisely position proteins and other biomolecules on underlying DNA scaffolds, generating multi-biomolecule pathways with the ability to modulate inter-molecular interactions and the local environment. This dissertation focuses on studying the application of using DNA nanostructure to direct the self-assembly of other biomolecular networks to translate biochemical pathways to non-cellular environments. Presented here are a series of studies toward this application. First, a novel strategy utilized DNA origami as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning. This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multi-component systems from biological scaffolds using the power of rationally engineered DNA nanostructures. Next, discrete glucose oxidase (GOx)/ horseradish peroxidase (HRP) enzyme pairs were organized on DNA origami tiles with controlled interenzyme spacing and position. This study revealed two different distance-dependent kinetic processes associated with the assembled enzyme pairs. Finally, a tweezer-like DNA nanodevice was designed and constructed to actuate the activity of an enzyme/cofactor pair. Using this approach, several cycles of externally controlled enzyme inhibition and activation were successfully demonstrated. This principle of responsive enzyme nanodevices may be used to regulate other types of enzymes and to introduce feedback or feed-forward control loops.
ContributorsLiu, Minghui (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian (Committee member) / Zhang, Peiming (Committee member) / Arizona State University (Publisher)
Created2013
151872-Thumbnail Image.png
Description
Since Darwin popularized the evolution theory in 1895, it has been completed and studied through the years. Starting in 1990s, evolution at molecular level has been used to discover functional molecules while studying the origin of functional molecules in nature by mimicing the natural selection process in laboratory. Along this

Since Darwin popularized the evolution theory in 1895, it has been completed and studied through the years. Starting in 1990s, evolution at molecular level has been used to discover functional molecules while studying the origin of functional molecules in nature by mimicing the natural selection process in laboratory. Along this line, my Ph.D. dissertation focuses on the in vitro selection of two important biomolecules, deoxynucleotide acid (DNA) and protein with binding properties. Chapter two focuses on in vitro selection of DNA. Aptamers are single-stranded nucleic acids that generated from a random pool and fold into stable three-dimensional structures with ligand binding sites that are complementary in shape and charge to a desired target. While aptamers have been selected to bind a wide range of targets, it is generally thought that these molecules are incapable of discriminating strongly alkaline proteins due to the attractive forces that govern oppositely charged polymers. By employing negative selection step to eliminate aptamers that bind with off-target through charge unselectively, an aptamer that binds with histone H4 protein with high specificity (>100 fold)was generated. Chapter four focuses on another functional molecule: protein. It is long believed that complex molecules with different function originated from simple progenitor proteins, but very little is known about this process. By employing a previously selected protein that binds and catalyzes ATP, which is the first and only protein that was evolved completely from random pool and has a unique α/β-fold protein scaffold, I fused random library to the C-terminus of this protein and evolved a multi-domain protein with decent properties. Also, in chapter 3, a unique bivalent molecule was generated by conjugating peptides that bind different sites on the protein with nucleic acids. By using the ligand interactions by nucleotide conjugates technique, off-the shelf peptide was transferred into high affinity protein capture reagents that mimic the recognition properties of natural antibodies. The designer synthetic antibody amplifies the binding affinity of the individual peptides by ∼1000-fold to bind Grb2 with a Kd of 2 nM, and functions with high selectivity in conventional pull-down assays from HeLa cell lysates.
ContributorsJiang, Bing (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2013
152020-Thumbnail Image.png
Description
The purpose of this pilot randomized control trial was to test the initial efficacy of a 10 week social cognitive theory (SCT)-based intervention to reduce workplace sitting time (ST). Participants were currently employed adults with predominantly sedentary occupations (n=24) working in the Greater Phoenix area in 2012-2013. Participants wore an

The purpose of this pilot randomized control trial was to test the initial efficacy of a 10 week social cognitive theory (SCT)-based intervention to reduce workplace sitting time (ST). Participants were currently employed adults with predominantly sedentary occupations (n=24) working in the Greater Phoenix area in 2012-2013. Participants wore an activPAL (AP) inclinometer to assess postural allocation (i.e., sitting vs. standing) and Actigraph accelerometer (AG) to assess sedentary time for one week prior to beginning and immediately following the completion of the 10 week intervention. Self-reported measures of sedentary time were obtained via two validated questionnaires for overall (International Physical Activity Questionnaire [IPAQ]) and domain specific sedentary behaviors (Sedentary Behavior Questionnaire [SBQ]). SCT constructs were also measured pre and post via adapted physical activity questionnaires. Participants were randomly assigned to receive either (a) 10 weekly social cognitive-based e-newsletters focused on reducing workplace ST; or (b) similarly formatted 10 weekly e-newsletters focusing on health education. Baseline adjusted Analysis of Covariance statistical analyses were used to examine differences between groups in time spent sitting (AP) and sedentary (AG) during self-reported work hours from pre- to post- intervention. Both groups decreased ST and AG sedentary time; however, no significant differences were observed. SCT constructs also did not change significantly between pretest and post test in either group. These results indicate that individualized educational approaches to decreasing workplace sitting time may not be sufficient for observing long term change in behaviors. Future research should utilize a larger sample, measure main outcomes more frequently, and incorporate more environmental factors throughout the intervention.
ContributorsGordon, Amanda (Author) / Buman, Matthew (Thesis advisor) / Der Ananian, Cheryl (Committee member) / Swan, Pamela (Committee member) / Arizona State University (Publisher)
Created2013
151927-Thumbnail Image.png
Description
INTRODUCTION: Exercise performed at moderate to vigorous intensities has been shown to generate a post exercise hypotensive response. Whether this response is observed with very low exercise intensities is unclear. PURPOSE: To compare post physical activity ambulatory blood pressure (ABP) response to a single worksite walking day and a normal

INTRODUCTION: Exercise performed at moderate to vigorous intensities has been shown to generate a post exercise hypotensive response. Whether this response is observed with very low exercise intensities is unclear. PURPOSE: To compare post physical activity ambulatory blood pressure (ABP) response to a single worksite walking day and a normal sedentary work day in pre-hypertensive adults. METHODS: Participants were 7 pre-hypertensive (127 + 8 mmHg / 83 + 8 mmHg) adults (3 male, 4 female, age = 42 + 12 yr) who participated in a randomized, cross-over study that included a control and a walking treatment. Only those who indicated regularly sitting at least 8 hours/day and no structured physical activity were enrolled. Treatment days were randomly assigned and were performed one week apart. Walking treatment consisted of periodically increasing walk time up to 2.5 hours over the course of an 8 hour work day on a walking workstation (Steelcase Company, Grand Rapids, MI). Walk speed was set at 1 mph. Participants wore an ambulatory blood pressure cuff (Oscar 2, SunTech Medical, Morrisville, NC) for 24-hours on both treatment days. Participants maintained normal daily activities on the control day. ABP data collected from 9:00 am until 10:00 pm of the same day were included in statistical analyses. Linear mixed models were used to detect differences in systolic (SBP) and diastolic blood pressure (DBP) by treatment condition over the whole day and post workday for the time periods between 4 -10 pm when participants were no longer at work. RESULTS:BP was significantly lower in response to the walking treatment compared to the control day (Mean SBP 126 +7 mmHg vs.124 +7 mmHg, p=.043; DBP 80 + 3 mmHg vs. 77 + 3 mmHg, p = 0.001 respectively). Post workday (4:00 to 10:00 pm) SBP decreased 3 mmHg (p=.017) and DBP decreased 4 mmHg (p<.001) following walking. CONCLUSION: Even low intensity exercise such as walking on a walking workstation is effective for significantly reducing acute BP when compared to a normal work day.
ContributorsZeigler, Zachary (Author) / Swan, Pamela (Thesis advisor) / Buman, Matthew (Committee member) / Gaesser, Glenn (Committee member) / Arizona State University (Publisher)
Created2013
151456-Thumbnail Image.png
Description
The need for a renewable and sustainable light-driven energy source is the motivation for this work, which utilizes a challenging, yet practical and attainable bio-inspired approach to develop an artificial oxygen evolving complex, which builds upon the principles of the natural water splitting mechanism in oxygenic photosynthesis. In this work,

The need for a renewable and sustainable light-driven energy source is the motivation for this work, which utilizes a challenging, yet practical and attainable bio-inspired approach to develop an artificial oxygen evolving complex, which builds upon the principles of the natural water splitting mechanism in oxygenic photosynthesis. In this work, a stable framework consisting of a three-dimensional DNA tetrahedron has been used for the design of a bio-mimic of the Oxygen-Evolving Complex (OEC) found in natural Photosystem II (PSII). PSII is a large protein complex that evolves all the oxygen in the atmosphere, but it cannot be used directly in artificial systems, as the light reactions lead to damage of one of Photosystem II's core proteins, D1, which has to be replaced every half hour in the presence of sunlight. The final goal of the project aims to build the catalytic center of the OEC, including the Mn4CaCl metal cluster and its protein environment in the stable DNA framework of a tetrahedron, which can subsequently be connected to a photo-stable artificial reaction center that performs light-induced charge separation. Regions of the peptide sequences containing Mn4CaCl ligation sites are implemented in the design of the aOEC (artificial oxygen-evolving complex) and are attached to sites within the tetrahedron to facilitate assembly. Crystals of the tetrahedron have been obtained, and X-ray crystallography has been used for characterization. As a proof of concept, metal-binding peptides have been coupled to the DNA tetrahedron which allowed metal-containing porphyrins, specifically Fe(III) meso-Tetra(4-sulfonatophenyl) porphyrin chloride, to be encapsulated inside the DNA-tetrahedron. The porphyrins were successfully assembled inside the tetrahedron through coordination of two terminal histidines from the orthogonally oriented peptides covalently attached to the DNA. The assembly has been characterized using Electron Paramagnetic Resonance (EPR), optical spectroscopy, Dynamic Light Scattering (DLS), and x-ray crystallography. The results reveal that the spin state of the metal, iron (III), switches during assembly from the high-spin state to low-spin state.
ContributorsRendek, Kimberly Nicole (Author) / Fromme, Petra (Thesis advisor) / Chen, Julian (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2012
152062-Thumbnail Image.png
Description
Eccentric muscle action (ECC) occurs when the force exerted by a working muscle is less than that of an outside resistance. This is characterized by muscle lengthening, despite actin-myosin crossbridge formation. Research has indicated that muscles acting eccentrically are capable of producing more force when compared to muscles acting concentrically.

Eccentric muscle action (ECC) occurs when the force exerted by a working muscle is less than that of an outside resistance. This is characterized by muscle lengthening, despite actin-myosin crossbridge formation. Research has indicated that muscles acting eccentrically are capable of producing more force when compared to muscles acting concentrically. Further, research has shown ECC muscle actions may have different fatigue patterns that CON actions. The purpose of this study was to determine if a) ECC bench press yields greater strength than concentric (CON) as measured by one-repetition maximum (1RM), b) there is a difference between the number of repetitions that can be completed concentrically and eccentrically under the same relative intensities of 1RM (90%, 80%, 70%, 60%), c) a prediction model may be able to predict ECC 1RM from CON 1RM or CON repetitions to fatigue. For this study, 30 healthy males (age = 24.63 + 5.6 years) were tested for 1RM in CON and ECC bench press, as well as the number of repetitions they were able to complete at various intensities of mode-specific 1RM. A mechanical hoist was affixed to a gantry crane and placed over a standard weightlifting bench. The hoist was connected to 45lb plates that were loaded on a standard barbell, which allowed for mechanical raising and lowering of the barbell. For CON repetitions, the weight was mechanically lowered to the chest and the participant pressed it up. For ECC repetitions, the weight was mechanically raised and the participant lowered it. Paired t-tests showed that ECC 1RM was significantly (p < 0.05) greater than CON 1RM (ECC =255.17 + 68.37lbs, CON = 205.83 + 58.43lbs). There was a significant difference (p < 0.05) between the number of repetitions completed at 90% 1RM (CON = 4.57 + 2.21 repetitions, ECC = 7.67 + 3.24 repetitions). There were no differences in repetitions completed at any other intensity 1RM. CON 1RM and the number of repetitions completed with two different absolute loads (130-150lbs and 155-175lbs) concentrically and eccentrically were valid predictors of ECC 1RM. These data indicate that ECC actions yield increased force capabilities than CON actions, there is no difference in the rate of the fatigue, and ECC 1RM may be predicted from various CON tests.
ContributorsKelly, Stephen B., Jr (Author) / Hooker, Steven (Thesis advisor) / Brown, Lee (Committee member) / Buman, Matthew (Committee member) / Gaesser, Glenn (Committee member) / Swan, Pamela (Committee member) / Arizona State University (Publisher)
Created2013
150985-Thumbnail Image.png
Description
Membrane protein structure is continuing to be a topic of interest across the scientific community. However, high resolution structural data of these proteins is difficult to obtain. The amino acid transport protein, Outer Envelope Protein, 16kDa (OEP16) is a transmembrane protein channel that allows the passive diffusion of amino acids

Membrane protein structure is continuing to be a topic of interest across the scientific community. However, high resolution structural data of these proteins is difficult to obtain. The amino acid transport protein, Outer Envelope Protein, 16kDa (OEP16) is a transmembrane protein channel that allows the passive diffusion of amino acids across the outer chloroplast membrane, and is used as a model protein in order to establish methods that ultimately reveal structural details about membrane proteins using nuclear magnetic resonance (NMR) spectroscopy. Methods include recombinant expression of isotope enriched inclusion bodies, purification and reconstitution in detergent micelles, and pre-characterization techniques including circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), and high pressure liquid chromatography (HPLC). High resolution NMR spectroscopy was able to assign 99% of the amide backbone and the chemical shifts provided detailed secondary structure of OEP16 on a per residue basis using the software TALOS+. Relaxation studies explored the intramolecular dynamics of OEP16 and results strongly support the resonance assignments. Successful titration studies were able to locate residues important for amino acid binding for import into the chloroplast as well as provide information on how the transmembrane helices of OEP16 are packed together. For the first time there is experimental evidence that can assign the location of secondary structure in OEP16 and creates a foundation for a future three dimensional structure.
ContributorsZook, James Duncan (Author) / Fromme, Petra (Thesis advisor) / Chen, Julian (Committee member) / Wachter, Rebekka (Committee member) / Arizona State University (Publisher)
Created2012
136100-Thumbnail Image.png
Description
The purpose of this study is to first investigate the role of political socialization on young men and women and what motivates them to become politically active and make the ultimate decision to run for elected office. These effects include parental attitudes, exposure to political shows and news sources, participation

The purpose of this study is to first investigate the role of political socialization on young men and women and what motivates them to become politically active and make the ultimate decision to run for elected office. These effects include parental attitudes, exposure to political shows and news sources, participation in voluntary organizations, and overall community involvement. After understanding these direct and indirect effects of political socialization, I can attempt to explain the causes for the gender gap in political ambition \u2014 meaning that significantly more men are running for elected office compared to women.
ContributorsOsgood, Shannon Marie (Author) / Woodall, Gina (Thesis director) / Herrera, Richard (Committee member) / Barrett, The Honors College (Contributor) / College of Public Service and Community Solutions (Contributor) / School of Public Affairs (Contributor) / School of Politics and Global Studies (Contributor)
Created2015-05
136102-Thumbnail Image.png
Description
This paper studies the change in social diversity and interaction space from the Classic to Postclassic periods in the Mimbres Valley and East Mimbres Area. Between the Classic and Postclassic periods the Mimbres region of the American Southwest exhibits an increase in diversity of ceramic wares. Previous research suggests that

This paper studies the change in social diversity and interaction space from the Classic to Postclassic periods in the Mimbres Valley and East Mimbres Area. Between the Classic and Postclassic periods the Mimbres region of the American Southwest exhibits an increase in diversity of ceramic wares. Previous research suggests that increased diversity of ceramics indicates a more diverse community, which could pose challenges to local social interaction (Nelson et al. 2011). I am interested in whether the architecture of plazas, focal points of communities' social structures, change in response to the growing social diversity. To examine this, I quantify the diversity of painted ceramics at Classic and Postclassic villages as well as the extent of the enclosure of plazas. I find that there is a definite shift towards greater plaza enclosure between the Classic and Postclassic periods. I conclude this paper with a discussion of possible interpretations of this trend regarding the social reactions of Mimbres communities to the changes which reshaped the region between the Classic and Postclassic periods.
Created2015-05