Matching Items (14)
157711-Thumbnail Image.png
Description
Power management circuits are employed in most electronic integrated systems, including applications for automotive, IoT, and smart wearables. Oftentimes, these power management circuits become a single point of system failure, and since they are present in most modern electronic devices, they become a target for hardware security attacks. Digital circuits

Power management circuits are employed in most electronic integrated systems, including applications for automotive, IoT, and smart wearables. Oftentimes, these power management circuits become a single point of system failure, and since they are present in most modern electronic devices, they become a target for hardware security attacks. Digital circuits are typically more prone to security attacks compared to analog circuits, but malfunctions in digital circuitry can affect the analog performance/parameters of power management circuits. This research studies the effect that these hacks will have on the analog performance of power circuits, specifically linear and switching power regulators/converters. Apart from security attacks, these circuits suffer from performance degradations due to temperature, aging, and load stress. Power management circuits usually consist of regulators or converters that regulate the load’s voltage supply by employing a feedback loop, and the stability of the feedback loop is a critical parameter in the system design. Oftentimes, the passive components employed in these circuits shift in value over varying conditions and may cause instability within the power converter. Therefore, variations in the passive components, as well as malicious hardware security attacks, can degrade regulator performance and affect the system’s stability. The traditional ways of detecting phase margin, which indicates system stability, employ techniques that require the converter to be in open loop, and hence can’t be used while the system is deployed in-the-field under normal operation. Aging of components and security attacks may occur after the power management systems have completed post-production test and have been deployed, and they may not cause catastrophic failure of the system, hence making them difficult to detect. These two issues of component variations and security attacks can be detected during normal operation over the product lifetime, if the frequency response of the power converter can be monitored in-situ and in-field. This work presents a method to monitor the phase margin (stability) of a power converter without affecting its normal mode of operation by injecting a white noise/ pseudo random binary sequence (PRBS). Furthermore, this work investigates the analog performance parameters, including phase margin, that are affected by various digital hacks on the control circuitry associated with power converters. A case study of potential hardware attacks is completed for a linear low-dropout regulator (LDO).
ContributorsMalakar, Pragya Priya (Author) / Kitchen, Jennifer (Thesis advisor) / Ozev, Sule (Committee member) / Brunhaver, John (Committee member) / Arizona State University (Publisher)
Created2019
158643-Thumbnail Image.png
Description
A Single Event Transient (SET) is a transient voltage pulse induced by an ionizing radiation particle striking a combinational logic node in a circuit. The probability of a storage element capturing the transient pulse depends on the width of the pulse. Measuring the rate of occurrence and the distribution of

A Single Event Transient (SET) is a transient voltage pulse induced by an ionizing radiation particle striking a combinational logic node in a circuit. The probability of a storage element capturing the transient pulse depends on the width of the pulse. Measuring the rate of occurrence and the distribution of SET pulse widths is essential to understand the likelihood of soft errors and to develop cost-effective mitigation schemes. Existing research measures the pulse width of SETs in bulk Complementary Metal-Oxide-Semiconductor (CMOS) and Silicon On Insulator (SOI) technologies, but not on Fin Field-Effect Transistors (FinFETs). This thesis focuses on developing a test structure on the FinFET process to generate, propagate, and separate SETs and build a time-to-digital converter to measure the pulse width of SET.



The proposed SET test structure statistically separates SETs generated at NMOS and PMOS based on the difference in restoring current. It consists of N-collection devices to collect events at NMOS and P-collection devices to collect events at PMOS. The events that occur in PMOS of the N-collection device and NMOS of the P-collection device are false events. The logic gates of the collection devices are skewed to perform pulse expansion so that a minimally sustained SET propagates without getting suppressed by the contamination delay. A symmetric tree structure with an S-R latch event detector localizes the location of the SET. The Cartesian coordinates-based pulse injection structure injects external pulses at specific nodes to perform instrumentation and calibrate the measurement. A thermometer-encoded chain (vernier chain) with mismatched delay paths measures the width of the SET.

For low Linear Energy Transfer (LET) tests, the false events are entirely masked and do not propagate since the amount of charge that has to be deposited for successful event propagation is significantly high. In the case of high LET tests, the actual events and false events propagate, but they can be separated based on the SET location and the width of the output event. The vernier chain has a high measurement resolution of ~3.5ps, which aids in separating the events.
ContributorsShreedharan, Sanjay (Author) / Brunhaver, John (Thesis advisor) / Clark, Lawrence (Committee member) / Sanchez Esqueda, Ivan (Committee member) / Arizona State University (Publisher)
Created2020
161894-Thumbnail Image.png
Description
Heterogenous SoCs are in development that marry multiple architectural patterns together. In order for software to be run on such a platform, it must be broken down into its constituent parts, kernels, and scheduled for execution on the hardware. Although this can be done by hand, it would be arduous

Heterogenous SoCs are in development that marry multiple architectural patterns together. In order for software to be run on such a platform, it must be broken down into its constituent parts, kernels, and scheduled for execution on the hardware. Although this can be done by hand, it would be arduous and time consuming; rather, a tool should be developed that analyzes the source binary, extracts the kernels, schedules the kernels, and optimizes the scheduled kernels for their target component. This dissertation proposes a decidable kernel definition that enables an algorithmic approach to detecting kernels from arbitrary programs. This definition is built upon four constraints that can be tested using basic graph theory. In addition, two algorithms are proposed that successfully extract kernels based upon runtime information. The first utilizes dynamic traces, which are generated using a collection of novel optimizations. The second utilizes a simple affinity matrix, which has no runtime overhead during program execution. Finally, a Dense Neural Network is proposed that is capable of detecting a kernel's archetype based upon only the composition of the source program and the number of times individual basic blocks execute. The contributions proposed in this dissertation provide the necessary infrastructure to perform a litany of other optimizations on kernels. By detecting kernels algorithmically, any program can be analyzed and optimized with techniques that have heretofore required kernels be written in a compatible form. Computational kernels can be extracted from any program with no constraints. The innovations describes here will form the foundation for automated kernel optimization in the future, helping optimize the code of the future.
ContributorsUhrie, Richard Lawrence (Author) / Brunhaver, John (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Shrivastiva, Aviral (Committee member) / Wu, Carole-Jean (Committee member) / Arizona State University (Publisher)
Created2021
154425-Thumbnail Image.png
Description
Digital systems are essential to the technological advancements in space exploration. Microprocessor and flash memory are the essential parts of such a digital system. Space exploration requires a special class of radiation hardened microprocessors and flash memories, which are not functionally disrupted in the presence of radiation. The reference design

Digital systems are essential to the technological advancements in space exploration. Microprocessor and flash memory are the essential parts of such a digital system. Space exploration requires a special class of radiation hardened microprocessors and flash memories, which are not functionally disrupted in the presence of radiation. The reference design ‘HERMES’ is a radiation-hardened microprocessor with performance comparable to commercially available designs. The reference design ‘eFlash’ is a prototype of soft-error hardened flash memory for configuring Xilinx FPGAs. These designs are manufactured using a foundry bulk CMOS 90-nm low standby power (LP) process. This thesis presents the post-silicon validation results of these designs.
ContributorsGogulamudi, Anudeep Reddy (Author) / Clark, Lawrence T (Thesis advisor) / Holbert, Keith E. (Committee member) / Brunhaver, John (Committee member) / Arizona State University (Publisher)
Created2016