Matching Items (163)
149730-Thumbnail Image.png
Description
Nonlinear dispersive equations model nonlinear waves in a wide range of physical and mathematics contexts. They reinforce or dissipate effects of linear dispersion and nonlinear interactions, and thus, may be of a focusing or defocusing nature. The nonlinear Schrödinger equation or NLS is an example of such equations. It appears

Nonlinear dispersive equations model nonlinear waves in a wide range of physical and mathematics contexts. They reinforce or dissipate effects of linear dispersion and nonlinear interactions, and thus, may be of a focusing or defocusing nature. The nonlinear Schrödinger equation or NLS is an example of such equations. It appears as a model in hydrodynamics, nonlinear optics, quantum condensates, heat pulses in solids and various other nonlinear instability phenomena. In mathematics, one of the interests is to look at the wave interaction: waves propagation with different speeds and/or different directions produces either small perturbations comparable with linear behavior, or creates solitary waves, or even leads to singular solutions. This dissertation studies the global behavior of finite energy solutions to the $d$-dimensional focusing NLS equation, $i partial _t u+Delta u+ |u|^{p-1}u=0, $ with initial data $u_0in H^1,; x in Rn$; the nonlinearity power $p$ and the dimension $d$ are chosen so that the scaling index $s=frac{d}{2}-frac{2}{p-1}$ is between 0 and 1, thus, the NLS is mass-supercritical $(s>0)$ and energy-subcritical $(s<1).$ For solutions with $ME[u_0]<1$ ($ME[u_0]$ stands for an invariant and conserved quantity in terms of the mass and energy of $u_0$), a sharp threshold for scattering and blowup is given. Namely, if the renormalized gradient $g_u$ of a solution $u$ to NLS is initially less than 1, i.e., $g_u(0)<1,$ then the solution exists globally in time and scatters in $H^1$ (approaches some linear Schr"odinger evolution as $ttopminfty$); if the renormalized gradient $g_u(0)>1,$ then the solution exhibits a blowup behavior, that is, either a finite time blowup occurs, or there is a divergence of $H^1$ norm in infinite time. This work generalizes the results for the 3d cubic NLS obtained in a series of papers by Holmer-Roudenko and Duyckaerts-Holmer-Roudenko with the key ingredients, the concentration compactness and localized variance, developed in the context of the energy-critical NLS and Nonlinear Wave equations by Kenig and Merle. One of the difficulties is fractional powers of nonlinearities which are overcome by considering Besov-Strichartz estimates and various fractional differentiation rules.
ContributorsGuevara, Cristi Darley (Author) / Roudenko, Svetlana (Thesis advisor) / Castillo_Chavez, Carlos (Committee member) / Jones, Donald (Committee member) / Mahalov, Alex (Committee member) / Suslov, Sergei (Committee member) / Arizona State University (Publisher)
Created2011
148108-Thumbnail Image.png
Description

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile species survival in the valley. Research shows that animals in the classroom have led to improved academic success for students. Thus, through creating this course I was able to combine conservation and sustainability curriculum with real-life animals whose survival is directly being affected in the valley. My hope is that this course will help students identify a newfound passion and call to action to protect native wildlife. The more awareness and actionable knowledge which can be brought to students in Arizona about challenges to species survival the more likely we are to see a change in the future and a stronger sense of urgency for protecting wildlife. In order to accomplish these goals, the curriculum was developed to begin with basic concepts of species needs such as food and shelter and basic principles of sustainability. As the course progresses the students analyze current challenges reptile wildlife faces, like urban sprawl, and explore options to address these challenges. The course concludes with a pilot pitch where students present their solution projects to the school.

ContributorsGoethe, Emma Rae (Author) / Brundiers, Katja (Thesis director) / Bouges, Olivia (Committee member) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147975-Thumbnail Image.png
Description

As climate change continues to escalate natural hazards around the globe, certain communities feel the impacts of these disasters more so than others. After Hurricane Maria devastated communities in 2017, Puerto Rico struggled to respond to the needs of its citizens, particularly those in rural areas. Many of the regions

As climate change continues to escalate natural hazards around the globe, certain communities feel the impacts of these disasters more so than others. After Hurricane Maria devastated communities in 2017, Puerto Rico struggled to respond to the needs of its citizens, particularly those in rural areas. Many of the regions affected did not have resilient community structures in place to be able to withstand the systemic ripple effects of the hurricane. However, various community endeavors have developed post-Hurricane Maria to foster community collaboration and resiliency, including the development of agricultural tourism, otherwise known as agritourism. <br/>Although agritourism has begun to develop in rural regions of Puerto Rico, including the municipalities of Utuado, Ciales, Florida, and Jayuya, a systems-understanding is lacking of the current agritourism situation in the region and its related capacities, limitations, and opportunities of agritourism. To address this gap, a spatially explicit understanding and map of the underlying tourism infrastructure is needed to support the development of sustainable agritourism in Utuado, Jayuya, Ciales, and Florida municipalities in Puerto Rico. <br/>This report spatially represents the current state of tourism opportunities in the region as a result of asking “What are the spatial networks of gastronomy, accommodations, farms, and attractions that support the development of agritourism in Utuado, Jayuya, Ciales and Florida municipalities in Puerto Rico?” Three steps lead to the spatial representation starting with developing a comprehensive inventory. Second, we visualize the spatial map through Google Maps. Lastly, we explore the larger context of the report through an ArcGIS Storymap. The inventory will help with better understanding the number and variety of tourism resources available. The spatial visualization will help with understanding the distribution of resources and explore potential connections between resources and what relationships could be fostered in the future. Lastly, the ArcGIS Storymap will serve as a framework for outlining the future development of the SARE project. Overall, this report outlines the spatial maps of tourism resources and provides a tool to be used by community partners, tourists, and project partners.

ContributorsCretors, Kasey Ann (Author) / Brundiers, Katja (Thesis director) / Holladay, Patrick (Committee member) / Lazaro, Pablo Mendez (Committee member) / School of International Letters and Cultures (Contributor) / School of Sustainability (Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
151515-Thumbnail Image.png
Description
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified

This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
ContributorsChoukulkar, Aditya (Author) / Calhoun, Ronald (Thesis advisor) / Mahalov, Alex (Committee member) / Kostelich, Eric (Committee member) / Huang, Huei-Ping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
Description
It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement

It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement on conventional real-world performance. These measurements are then used as inputs for a model optimal, model agnostic, smoothing for calibration of a laser scribe and online tracking of velocimeter using video input. Using appropriate smooth interpolation to increase effective sample density can reduce uncertainty and improve estimates. Use of the proper negative offset of the template function has the result of creating a convolution with higher local curvature than either template of target function which allows improved center-finding. Using the Akaike Information Criterion with a smoothing spline function it is possible to perform a model-optimal smooth on scalar measurements without knowing the underlying model and to determine the function describing the uncertainty in that optimal smooth. An example of empiric derivation of the parameters for a rudimentary Kalman Filter from this is then provided, and tested. Using the techniques of Exploratory Data Analysis and the "Formulize" genetic algorithm tool to convert the spline models into more accessible analytic forms resulted in stable, properly generalized, KF with performance and simplicity that exceeds "textbook" implementations thereof. Validation of the measurement includes that, in analytic case, it led to arbitrary precision in measurement of feature; in reasonable test case using the methods proposed, a reasonable and consistent maximum error of around 0.3% the length of a pixel was achieved and in practice using pixels that were 700nm in size feature position was located to within ± 2 nm. Robust applicability is demonstrated by the measurement of indicator position for a King model 2-32-G-042 rotameter.
ContributorsMunroe, Michael R (Author) / Phelan, Patrick (Thesis advisor) / Kostelich, Eric (Committee member) / Mahalov, Alex (Committee member) / Arizona State University (Publisher)
Created2012
137475-Thumbnail Image.png
Description
My project is an examination of the process ASU Tempe campus took to institute an organics collection program. Working from a sustainability science perspective I demonstrate the structural and logistical barriers faced during program creation and expansion. My examination lead to the creation of a manual designed as a tool

My project is an examination of the process ASU Tempe campus took to institute an organics collection program. Working from a sustainability science perspective I demonstrate the structural and logistical barriers faced during program creation and expansion. My examination lead to the creation of a manual designed as a tool for other organizations in which I document ASU's process and provide information on key steps and procedures necessary to implement a unique organics collection program.
ContributorsSchumacher, Katherine Marie (Author) / Schoon, Michael (Thesis director) / Brundiers, Katja (Committee member) / Levine, Alana (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / School of Sustainability (Contributor)
Created2013-05
141406-Thumbnail Image.png
Description

Communities in Phoenix are confronted with numerous challenges that adversely affect human health and safety, with disproportionate impacts on low-income communities. While some challenges are being addressed at the city level, new alliances at the neighbourhood level are initiating community development programmes and projects. This article reports on an intervention

Communities in Phoenix are confronted with numerous challenges that adversely affect human health and safety, with disproportionate impacts on low-income communities. While some challenges are being addressed at the city level, new alliances at the neighbourhood level are initiating community development programmes and projects. This article reports on an intervention study carried out in collaboration with community representatives, city staff, and non-profit organisations to mitigate adverse effects of urban sprawl in the Sky Harbour Neighbourhood in Phoenix. Participatory research was conducted to design and test a tree and shade intervention. Challenges associated with navigating community desires and broader principles of sustainable development are discussed. The study offers a replicable and adaptable intervention research design aimed at empowering communities to meet urban challenges.

ContributorsBernstein, Michael J. (Author) / Wiek, Arnim (Author) / Brundiers, Katja (Author) / Pearson, Kimberly (Author) / Minowitz, Amy (Author) / Kay, Braden (Author) / Golub, Aaron (Author)
Created2014-05-01
130393-Thumbnail Image.png
Description
Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative

Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative frequency in the population. The behavioral factors that underpin contact rates are not generally addressed. There is, however, an emerging a class of models that addresses the feedbacks between infectious disease dynamics and the behavioral decisions driving host contact. Referred to as “economic epidemiology” or “epidemiological economics,” the approach explores the determinants of decisions about the number and type of contacts made by individuals, using insights and methods from economics. We show how the approach has the potential both to improve predictions of the course of infectious disease, and to support development of novel approaches to infectious disease management.
Created2015-12-01
130394-Thumbnail Image.png
Description

Nutrient recycling by fish can be an important part of nutrient cycles in both freshwater and marine ecosystems. As a result, understanding the mechanisms that influence excretion elemental ratios of fish is of great importance to a complete understanding of aquatic nutrient cycles. As fish consume a wide range of

Nutrient recycling by fish can be an important part of nutrient cycles in both freshwater and marine ecosystems. As a result, understanding the mechanisms that influence excretion elemental ratios of fish is of great importance to a complete understanding of aquatic nutrient cycles. As fish consume a wide range of diets that differ in elemental composition, stoichiometric theory can inform predictions about dietary effects on excretion ratios.
We conducted a meta-analysis to test the effects of diet elemental composition on consumption and nutrient excretion by fish. We examined the relationship between consumption rate and diet N : P across all laboratory studies and calculated effect sizes for each excretion metric to test for significant effects.
Consumption rate of N, but not P, was significantly negatively affected by diet N : P. Effect sizes of diet elemental composition on consumption-specific excretion N, P and N : P in laboratory studies were all significantly different from 0, but effect size for raw excretion N : P was not significantly different from zero in laboratory or field surveys.
Our results highlight the importance of having a mechanistic understanding of the drivers of consumer excretion rates and ratios. We suggest that more research is needed on how consumption and assimilation efficiency vary with N : P and in natural ecosystems in order to further understand mechanistic processes in consumer-driven nutrient recycling.

ContributorsMoody, Eric (Author) / Corman, Jessica (Author) / Elser, James (Author) / Sabo, John (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-03-01
130400-Thumbnail Image.png
Description
Preserving a system’s viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter- or intraspecies, may increase population fragility, either decreasing its ability to adapt effectively to environmental changes or facilitating the survival and success of ordinarily

Preserving a system’s viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter- or intraspecies, may increase population fragility, either decreasing its ability to adapt effectively to environmental changes or facilitating the survival and success of ordinarily rare phenotypes. The latter may result in over-representation of individuals who may participate in resource utilization patterns that can lead to over-exploitation, exhaustion, and, ultimately, collapse of both the resource and the population that depends on it. Here, we aim to identify regimes that can signal whether a consumer–resource system is capable of supporting viable degrees of heterogeneity. The framework used here is an expansion of a previously introduced consumer–resource type system of a population of individuals classified by their resource consumption. Application of the Reduction Theorem to the system enables us to evaluate the health of the system through tracking both the mean value of the parameter of resource (over)consumption, and the population variance, as both change over time. The article concludes with a discussion that highlights applicability of the proposed system to investigation of systems that are affected by particularly devastating overly adapted populations, namely cancerous cells. Potential intervention approaches for system management are discussed in the context of cancer therapies.
Created2015-02-01