Matching Items (209)
129500-Thumbnail Image.png
Description

Although gender gaps have been a major concern in male-dominated science, technology, engineering, and mathematics disciplines such as physics and engineering, the numerical dominance of female students in biology has supported the assumption that gender disparities do not exist at the undergraduate level in life sciences. Using data from 23

Although gender gaps have been a major concern in male-dominated science, technology, engineering, and mathematics disciplines such as physics and engineering, the numerical dominance of female students in biology has supported the assumption that gender disparities do not exist at the undergraduate level in life sciences. Using data from 23 large introductory biology classes for majors, we examine two measures of gender disparity in biology: academic achievement and participation in whole-class discussions. We found that females consistently underperform on exams compared with males with similar overall college grade point averages. In addition, although females on average represent 60% of the students in these courses, their voices make up less than 40% of those heard responding to instructor-posed questions to the class, one of the most common ways of engaging students in large lectures. Based on these data, we propose that, despite numerical dominance of females, gender disparities remain an issue in introductory biology classrooms. For student retention and achievement in biology to be truly merit based, we need to develop strategies to equalize the opportunities for students of different genders to practice the skills they need to excel.

ContributorsEddy, Sarah L. (Author) / Brownell, Sara (Author) / Wenderoth, Mary Pat (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-02
Description

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition initiates the remodeling of the photosynthetic apparatus and an increase in the number of light harvesting 2 (LH2) complexes relative to light harvesting 1 (LH1) and reaction center (RC) complexes. It has generally been thought that the increase in LH2 complexes served the purpose of increasing the overall energy transmission to the RC. However, fluorescence lifetime measurements and analysis in terms of energy transfer within LH2 and between LH2 and LH1 indicate that, during the remodeling time period measured, only a portion of the additional LH2 generated are well connected to LH1 and the reaction center. The majority of the additional LH2 fluorescence decays with a lifetime comparable to that of free, unconnected LH2 complexes. The presence of large LH2-only domains has been observed by atomic force microscopy in Rba. sphaeroides chromatophores (Bahatyrova et al., Nature, 2004, 430, 1058), providing structural support for the existence of pools of partially connected LH2 complexes. These LH2-only domains represent the light-responsive antenna complement formed after a switch in growth conditions from high to low illumination, while the remaining LH2 complexes occupy membrane regions containing mixtures of LH2 and LH1–RC core complexes. The current study utilized a multi-parameter approach to explore the fluorescence spectroscopic properties related to the remodeling process, shedding light on the structure-function relationship of the photosynthetic assembles. Possible reasons for the accumulation of these largely disconnected LH2-only pools are discussed.

ContributorsDriscoll, Brent (Author) / Lunceford, Chad (Author) / Lin, Su (Author) / Woronowicz, K. (Author) / Niederman, R. A. (Author) / Woodbury, Neal (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-28
128747-Thumbnail Image.png
Description

Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific

Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 15 minutes of incubation as observed by flow cytometry. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making.

ContributorsGeorges, Joseph F. (Author) / Liu, Xiaowei (Author) / Eschbacher, Jennifer (Author) / Nichols, Joshua (Author) / Mooney, Michael A. (Author) / Joy, Anna (Author) / Spetzler, Robert F. (Author) / Feuerstein, Burt G. (Author) / Preul, Mark C. (Author) / Anderson, Trent (Author) / Yan, Hao (Author) / Nakaji, Peter (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2015-04-15
154733-Thumbnail Image.png
Description
Calls for changes in science education over the last several decades have contributed to a changing landscape of undergraduate life science education. As opposed to simply lecturing at students and expecting them to recite science facts, there has been a strong push to make systemic changes so that students not

Calls for changes in science education over the last several decades have contributed to a changing landscape of undergraduate life science education. As opposed to simply lecturing at students and expecting them to recite science facts, there has been a strong push to make systemic changes so that students not only know pertinent science content, but also walk away with critical science process skills. There have been suggestions to create environments that focus on goals such as evaluating scientific evidence and explanations, understanding the development of scientific knowledge, and participating in scientific practice and discourse. As a part of the call for increases in student participation in science practice, we’ve seen suggestions to increase student exposure to the tools, techniques, and published research within various science fields. The use of primary scientific literature in the classroom is documented as being a tool to introduce students to the nature of scientific reasoning, experimental design, and knowledge creation and transformation. Many of the current studies on primary scientific literature in undergraduate courses report on intensive course designs in which students interact with the material with very specific goals, as outlined by the authors and researchers. We know less about the practices that take place in typical undergraduate settings. This exploratory study looks at information provided by a national sample of faculty that alludes to what sort of practices are taking place and the reasoning for doing so. Through analysis of both closed-ended and open-ended survey questions we have found that faculty are engaging students with primary scientific literature for many reasons and in a variety of ways. We have also attempted to characterize the way in which faculty view the body of scientific literature, as members of the research community. We discuss the implications of faculty views on the utility and value of the body of scientific literature. We also argue that those perceptions inform how the material is used in the undergraduate classroom.
ContributorsWagoner, Nevada (Author) / Brownell, Sara (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2016
Description

Bioethics is an important aspect of the core competency of biology of understanding the relationship between science and society, but because of the controversial nature of the topics covered in bioethics courses, different groups of students may experience identity conflicts or discomfort when learning about them. However, no previous studies

Bioethics is an important aspect of the core competency of biology of understanding the relationship between science and society, but because of the controversial nature of the topics covered in bioethics courses, different groups of students may experience identity conflicts or discomfort when learning about them. However, no previous studies have investigated the impact of undergraduate bioethics students’ experiences in bioethics courses on their opinions and comfort. To fill this gap in knowledge, we investigated undergraduate bioethics students’ attitudes about and comfort when learning abortion, gene editing, and physician assisted suicide, as well as how their gender, religious, and political identity influence their attitudes and changes in their attitudes after instruction. We found that religious students were less supportive of gene editing, abortion, and physician assisted suicide than nonreligious students, non-liberal students were less supportive of abortion and physician assisted suicide than liberal students, and women were less supportive of abortion than men. Additionally, we found that religious students were less comfortable than nonreligious students when learning about gene editing, abortion, and physician assisted suicide, and non-liberal students were less comfortable than liberal students when learning about abortion. When asked how their comfort could have been improved, those who felt that their peers or instructors could have done something to increase their comfort most commonly cited that including additional unbiased materials or incorporating materials and discussions that cover both sides of every controversial issue would have helped them to feel more comfortable when learning about gene editing, abortion, and physician assisted suicide. Finally, we found that students who were less comfortable learning about abortion and physician assisted suicide were less likely to participate in discussions regarding those topics. Our findings show that students in different groups not only tend to have different support for controversial topics like gene editing, abortion, and physician assisted suicide, but they also feel differentially comfortable when learning about them, which in turn impacts their participation. We hope that this work helps instructors to recognize the importance of their students’ comfort to their learning in bioethics courses, and from this study, they can take away the knowledge that students feel their comfort could be most improved by the incorporation of additional inclusive materials and course discussions regarding the controversial topics covered in the course.

ContributorsEdwards, Baylee Anne (Author) / Brownell, Sara (Thesis director) / Cooper, Katelyn (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147652-Thumbnail Image.png
Description

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for crystal structure solution. To further progress towards this goal, 36

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for crystal structure solution. To further progress towards this goal, 36 unique four-armed DNA junctions were designed and crystallized for eventual solution of their 3D structures. While most of these junctions produced macroscale crystals which diffracted successfully, several prevented crystallization. Previous results used a fixed isomer and subsequent investigations adopted an alternate isomer to investigate the impact of these small sequence changes on the stability and structural properties of these crystals. DNA nanotechnology has also shown promise for a variety biomedical applications. In particular, DNA origami has been demonstrated as a promising tool for targeted and efficient delivery of drugs and vaccines due to their programmability and addressability to suit a variety of therapeutic cargo and biological functions. To this end, a previously designed DNA barrel nanostructure with a unique multimerizable pegboard architecture has been constructed and characterized via TEM for later evaluation of its stability under biological conditions for use in the targeted delivery of cargo, including CRISPR-containing adeno-associated viruses (AAVs) and mRNA.

ContributorsHostal, Anna Elizabeth (Author) / Anderson, Karen (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Yan, Hao (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
128797-Thumbnail Image.png
Description

Background: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing

Background: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity.

Methodology/Principal Findings: A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation.

Conclusions/Significance: A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.

ContributorsFu, Jinglin (Author) / Reinhold, Jeremy (Author) / Woodbury, Neal (Author) / Biodesign Institute (Contributor)
Created2011-04-08
135993-Thumbnail Image.png
Description
Mammalian olfaction relies on active sniffing, which both shapes and is shaped by olfactory stimuli. Habituation to repeated exposure of an olfactory stimuli is believed to be mediated by decreased sniffing; however, this decrease may be reserved by exposure to novel odorants. Because of this, it may be possible to

Mammalian olfaction relies on active sniffing, which both shapes and is shaped by olfactory stimuli. Habituation to repeated exposure of an olfactory stimuli is believed to be mediated by decreased sniffing; however, this decrease may be reserved by exposure to novel odorants. Because of this, it may be possible to use sniffing itself as a measure of novelty, and thus as a measure of odorant similarity. Thus, I investigated the use of sniffing to measure habituation, cross-habituation, and odorant similarity. During habituation experiments, increases in sniff rate seen in response to odorant presentation decreased in magnitude between the first and second presentations, suggesting of habituation. Some of this reduction in sniff rate increases was revered by the presentation of a novel odorant in cross-habituations. However the effect sizes in cross-habituation experiments were low, and the variability high, forestalling the conclusion that sniffing accurately measured cross-habituation. I discuss improvements to the experimental protocol that may allow for cross-habituation to be more accurately measured using sniffing alone in future experiments.
ContributorsVigayavel, Nirmal (Author) / Smith, Brian (Thesis director) / Sanabria, Federico (Committee member) / Gerkin, Rick (Committee member) / Barrett, The Honors College (Contributor)
Created2015-12
Description
This study examines the complex relationship between depression and students' experiences in active learning science courses. We uncover the significant impact of depression on cognitive functioning, particularly affecting energy levels, motivation, and self-doubt, especially among women. Highlighting the intersectionality of gender and depression, we stress the need to address disparities

This study examines the complex relationship between depression and students' experiences in active learning science courses. We uncover the significant impact of depression on cognitive functioning, particularly affecting energy levels, motivation, and self-doubt, especially among women. Highlighting the intersectionality of gender and depression, we stress the need to address disparities and bolster confidence in academic settings.
ContributorsClark, Sarah (Author) / Cooper, Katelyn (Thesis director) / Brownell, Sara (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Dean, The College of Liberal Arts and Sciences (Contributor)
Created2024-05