Matching Items (138)
136109-Thumbnail Image.png
Description
Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develop these programs, effective theory and approach are critical to developing

Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develop these programs, effective theory and approach are critical to developing successful programs. Though there are a multitude of theories on successful student development, a focus on self-efficacy is critical. Summer Bridge programs across the country as well as the Bio Bridge summer program at Arizona State University were studied alone and through the lens of Cognitive Self-Efficacy Theory as mentioned in Albert Bandura's "Perceived Self-Efficacy in Cognitive Development and Functioning." Cognitive Self-Efficacy Theory provides a framework for self-efficacy development in academic settings. An analysis of fifteen bridge programs found that a large majority focused on developing academic capabilities and often overlooked development of community and social efficacy. An even larger number failed to focus on personal psychology in managing self-debilitating thought patterns based on published goals. Further, Arizona State University's Bio Bridge program could not be considered successful at developing cognitive self-efficacy or increasing retention as data was inconclusive. However, Bio Bridge was tremendously successful at developing social efficacy and community among participants and faculty. Further research and better evaluative techniques need to be developed to understand the program's effectiveness in cognitive self-efficacy development and retention.
ContributorsTummala, Sailesh Vardhan (Author) / Orchinik, Miles (Thesis director) / Brownell, Sara (Committee member) / Shortlidge, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136153-Thumbnail Image.png
Description
Along with the number of technologies that have been introduced over a few years ago, gesture-based human-computer interactions are becoming the new phase in encompassing the creativity and abilities for users to communicate and interact with devices. Because of how the nature of defining free-space gestures influence user's preference and

Along with the number of technologies that have been introduced over a few years ago, gesture-based human-computer interactions are becoming the new phase in encompassing the creativity and abilities for users to communicate and interact with devices. Because of how the nature of defining free-space gestures influence user's preference and the length of usability of gesture-driven devices, defined low-stress and intuitive gestures for users to interact with gesture recognition systems are necessary to consider. To measure stress, a Galvanic Skin Response instrument was used as a primary indicator, which provided evidence of the relationship between stress and intuitive gestures, as well as user preferences towards certain tasks and gestures during performance. Fifteen participants engaged in creating and performing their own gestures for specified tasks that would be required during the use of free-space gesture-driven devices. The tasks include "activation of the display," scroll, page, selection, undo, and "return to main menu." They were also asked to repeat their gestures for around ten seconds each, which would give them time and further insight of how their gestures would be appropriate or not for them and any given task. Surveys were given at different time to the users: one after they had defined their gestures and another after they had repeated their gestures. In the surveys, they ranked their gestures based on comfort, intuition, and the ease of communication. Out of those user-ranked gestures, health-efficient gestures, given that the participants' rankings were based on comfort and intuition, were chosen in regards to the highest ranked gestures.
ContributorsLam, Christine (Author) / Walker, Erin (Thesis director) / Danielescu, Andreea (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor) / School of Arts, Media and Engineering (Contributor) / Department of English (Contributor) / Computing and Informatics Program (Contributor)
Created2015-05
136329-Thumbnail Image.png
Description
Lean and Green construction methodologies are prevalent in today's construction industry. Green construction implementation in buildings has progressed quickly due to the popularity and development of building rating systems, such as LEED, Green Globes, and the Living Building Challenge. Similarly, lean construction has become more popular as this philosophy often

Lean and Green construction methodologies are prevalent in today's construction industry. Green construction implementation in buildings has progressed quickly due to the popularity and development of building rating systems, such as LEED, Green Globes, and the Living Building Challenge. Similarly, lean construction has become more popular as this philosophy often leads to efficient construction and improved owner satisfaction. Green construction is defined as using sustainable materials in the construction process to eliminate environmental degradation and ensure that material and equipment use aligns with the design intent and promotes efficient building performance. Lean construction is defined as a set of operational/systematic processes that reduce waste and eliminates defects in the project process throughout its lifecycle. This paper describes the implementation of Lean and Green construction processes to determine the trends that each methodology contributes to a project as well as how these methodologies synergize. The authors identified common elements of each methodology through semi-structured interviews with several construction industry professionals who had extensive experience with lean and green construction. Interviewees report lean and green construction philosophies are different "flavors" of the industry; however, interviewees also state if implemented together, these processes often result in a high-performance building.
ContributorsMaris, Kelsey Lynn (Co-author) / Parrish, Kristen (Co-author, Thesis director) / Olson, Patricia (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Del E. Webb Construction (Contributor)
Created2015-05
135873-Thumbnail Image.png
Description
Cancer remains one of the leading killers throughout the world. Death and disability due to lung cancer in particular accounts for one of the largest global economic burdens a disease presents. The burden on third-world countries is especially large due to the unusually large financial stress that comes from

Cancer remains one of the leading killers throughout the world. Death and disability due to lung cancer in particular accounts for one of the largest global economic burdens a disease presents. The burden on third-world countries is especially large due to the unusually large financial stress that comes from late tumor detection and expensive treatment options. Early detection using inexpensive techniques may relieve much of the burden throughout the world, not just in more developed countries. I examined the immune responses of lung cancer patients using immunosignatures – patterns of reactivity between host serum antibodies and random peptides. Immunosignatures reveal disease-specific patterns that are very reproducible. Immunosignaturing is a chip-based method that has the ability to display the antibody diversity from individual sera sample with low cost. Immunosignaturing is a medical diagnostic test that has many applications in current medical research and in diagnosis. From a previous clinical study, patients diagnosed for lung cancer were tested for their immunosignature vs. healthy non-cancer volunteers. The pattern of reactivity against the random peptides (the ‘immunosignature’) revealed common signals in cancer patients, absent from healthy controls. My study involved the search for common amino acid motifs in the cancer-specific peptides. My search through the hundreds of ‘hits’ revealed certain motifs that were repeated more times than expected by random chance. The amino acids that were the most conserved in each set include tryptophan, aspartic acid, glutamic acid, proline, alanine, serine, and lysine. The most overall conserved amino acid observed between each set was D - aspartic acid. The motifs were short (no more than 5-6 amino acids in a row), but the total number of motifs I identified was large enough to assure significance. I utilized Excel to organize the large peptide sequence libraries, then CLUSTALW to cluster similar-sequence peptides, then GLAM2 to find common themes in groups of peptides. In so doing, I found sequences that were also present in translated cancer expression libraries (RNA) that matched my motifs, suggesting that immunosignatures can find cancer-specific antigens that can be both diagnostic and potentially therapeutic.
ContributorsShiehzadegan, Shima (Author) / Johnston, Stephen (Thesis director) / Stafford, Phillip (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135900-Thumbnail Image.png
Description
As the demand for natural resources increases with population growth, importance has been placed on environmental issues due to increasing pressure on land, water, air, and raw materials. In order to sustain the environment and natural resources, sustainable engineering and earth systems engineering and management (ESEM) is vital for future

As the demand for natural resources increases with population growth, importance has been placed on environmental issues due to increasing pressure on land, water, air, and raw materials. In order to sustain the environment and natural resources, sustainable engineering and earth systems engineering and management (ESEM) is vital for future populations. The Aral Sea and the Florida Everglades are both regions that are heavily impacted by human design decisions. Comparing and analyzing the implications and outcomes of these human design decisions allows conclusions to be made regarding how earth systems engineering and management can be best accomplished. The Aral Sea, located in central Asia between Kazakhstan and Uzbekistan, is a case study of an ecosystem that has collapsed under the pressure of agricultural expansion. This has caused extensive economic, health, agricultural, and environmental impacts. The Everglades in southern Florida is a case study where the ecosystem has evolved from its original state, rather than collapsed, due to human settlement and water resource demand. In order to determine effective sustainable engineering approaches, the case studies will be evaluated using ESEM principles. These principles are used as guidance in executing better practice of sustainable engineering. When comparing the two case studies, it appears that the Everglades is an adequate representation of effective ESEM approaches, while the Aral Sea is not reflective of effective approaches. When practicing ESEM, it is critical that the principles be applied as a whole rather than individually. While the ESEM principles do not guarantee success, they offer an effective guide to dealing with the complexity and uncertainty in many of today's systems.
ContributorsRidley, Brooke Nicole (Author) / Allenby, Brad (Thesis director) / Parrish, Kristen (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
136827-Thumbnail Image.png
Description
Collaborative learning has been found to enhance student learning experiences through interaction with peers and instructors in a way that typically does not occur in a traditional lecture course. However, more than half of all collaborative learning structures have failed to last very long after their initial introductions which makes

Collaborative learning has been found to enhance student learning experiences through interaction with peers and instructors in a way that typically does not occur in a traditional lecture course. However, more than half of all collaborative learning structures have failed to last very long after their initial introductions which makes understanding the factors of collaboration that make it successful very important. The purpose of this study was to evaluate collaborative learning in a blended learning course to gauge student perceptions and the factors of collaboration and student demographics that impact that perception. This was done by surveying a sample of students in BIO 282 about their experiences in the BIO 281 course they took previously which was a new introductory Biology course with a blended learning structure. It was found that students agree that collaboration is beneficial as it provides an opportunity to gain additional insight from peers and improve students' understanding of course content. Also, differences in student gender and first generation status have less of an effect on student perceptions of collaboration than differences in academic achievement (grade) bracket.
ContributorsVu, Bethany Thao-Vy (Author) / Stout, Valerie (Thesis director) / Brownell, Sara (Committee member) / Wright, Christian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136656-Thumbnail Image.png
Description
The objective for Under the Camper Shell was to build a prototype of a full living environment within the confines of a pickup truck bed and camper shell. The total volume available to work with is approximately 85ft3. This full living environment entails functioning systems for essential modern living, providing

The objective for Under the Camper Shell was to build a prototype of a full living environment within the confines of a pickup truck bed and camper shell. The total volume available to work with is approximately 85ft3. This full living environment entails functioning systems for essential modern living, providing shelter and spaces for cooking, sleeping, eating, and sanitation. The project proved to be very challenging from the start. First, the livable space is extremely small, being only tall enough for one to sit up straight. The truck and camper shell were both borrowed items, so no modifications were allowed for either, e.g. drilling holes for mounting. The idea was to create a system that could be easily removed, transforming it from a camper to a utility truck. The systems developed for the living environment would be modular and transformative so to accommodate for different necessities when packing. The goal was to create a low-water system with sustainability in mind. Insulating the space was the largest challenge and the most rewarding, using body heat to warm the space and insulate from the elements. Comfort systems were made of high density foam cushions in sections to allow folding and stacking for different functions (sleeping, lounging, and sitting). Sanitation is necessary for healthy living and regular human function. A composting toilet was used for the design, lending to low-water usage and is sustainable over time. Saw dust would be necessary for its function, but upon composting, the unit will generate sufficient amounts of heat to act as a space heater. Showering serves the functions of exfoliation and ridding of bacteria, both of which bath wipes can accomplish, limiting massive volumes of water storage and waste. Storage systems were also designed for modularity. Hooks were installed the length of the bed for hanging or securing items as necessary. Some are available for hanging bags. A cabinetry rail also runs the length of the bed to allow movement of hard storage to accommodate different scenarios. The cooking method is called "sous-vide", a method of cooking food in air-tight bags submerged in hot water. The water is reusable for cooking and no dishes are necessary for serving. Overall, the prototype fulfilled its function as a full living environment with few improvements necessary for future use.
ContributorsLimsirichai, Pimwadee (Author) / Foy, Joseph (Thesis director) / Parrish, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-12
137139-Thumbnail Image.png
Description
The influenza virus, also known as "the flu", is an infectious disease that has constantly affected the health of humanity. There is currently no known cure for Influenza. The Center for Innovations in Medicine at the Biodesign Institute located on campus at Arizona State University has been developing synbodies as

The influenza virus, also known as "the flu", is an infectious disease that has constantly affected the health of humanity. There is currently no known cure for Influenza. The Center for Innovations in Medicine at the Biodesign Institute located on campus at Arizona State University has been developing synbodies as a possible Influenza therapeutic. Specifically, at CIM, we have attempted to design these initial synbodies to target the entire Influenza virus and preliminary data leads us to believe that these synbodies target Nucleoprotein (NP). Given that the synbody targets NP, the penetration of cells via synbody should also occur. Then by Western Blot analysis we evaluated for the diminution of NP level in treated cells versus untreated cells. The focus of my honors thesis is to explore how synthetic antibodies can potentially inhibit replication of the Influenza (H1N1) A/Puerto Rico/8/34 strain so that a therapeutic can be developed. A high affinity synbody for Influenza can be utilized to test for inhibition of Influenza as shown by preliminary data. The 5-5-3819 synthetic antibody's internalization in live cells was visualized with Madin-Darby Kidney Cells under a Confocal Microscope. Then by Western Blot analysis we evaluated for the diminution of NP level in treated cells versus untreated cells. Expression of NP over 8 hours time was analyzed via Western Blot Analysis, which showed NP accumulation was retarded in synbody treated cells. The data obtained from my honors thesis and preliminary data provided suggest that the synthetic antibody penetrates live cells and targets NP. The results of my thesis presents valuable information that can be utilized by other researchers so that future experiments can be performed, eventually leading to the creation of a more effective therapeutic for influenza.
ContributorsHayden, Joel James (Author) / Diehnelt, Chris (Thesis director) / Johnston, Stephen (Committee member) / Legutki, Bart (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
137154-Thumbnail Image.png
Description
Many student engagement studies take a holistic view of the student experience at a university setting, which includes factors both inside and outside of the classroom. However, most engagement improvements focus on activities outside of the classroom. Some research regarding improving teaching styles and activities shows an impact on engagement,

Many student engagement studies take a holistic view of the student experience at a university setting, which includes factors both inside and outside of the classroom. However, most engagement improvements focus on activities outside of the classroom. Some research regarding improving teaching styles and activities shows an impact on engagement, but little research has investigated the impact of the built environment on student engagement. This paper explores the definition of student engagement, what environmental variables affect building occupant performance, and specifically addresses how environmental variables can impact student engagement. The authors provide a review of literature discussing these variables as well as propose a method for quantifying the impact of the built environment on students based on results of a preliminary study. Evidence of a relationship between human comfort and student engagement can provide an argument for how thoughtful building designs can improve student success and engineering education. It can further extend to industry settings where green building design can lower operating costs and improve worker satisfaction and productivity.
ContributorsDuggan, Kathleen Rose (Author) / Parrish, Kristen (Thesis director) / Khanna, Vikas (Committee member) / Beckert, Kimberly (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
137642-Thumbnail Image.png
Description
The paper was written for the International Group for Lean Construction Conference in July 2013 in Fortaleza, Brazil.

With the advent of sustainable building ordinances in the United States and internationally, contractors are required to deliver sustainable projects but have historically not been considered partners in developing the sustainability goals and

The paper was written for the International Group for Lean Construction Conference in July 2013 in Fortaleza, Brazil.

With the advent of sustainable building ordinances in the United States and internationally, contractors are required to deliver sustainable projects but have historically not been considered partners in developing the sustainability goals and objectives for projects. Additionally, as alternative project delivery methods gain popularity, contractors have an opportunity and—in an increasing number of cases—a requirement, to take a larger role in sustainability efforts beyond the design phase. Understanding the contractor’s self-perceived role in this industry is imperative to informing their future role in the sustainable construction industry. This paper presents data and analysis of a survey of general contractors in the Phoenix, Arizona market that asked for their opinions and viewpoints regarding sustainable construction. Respondents provided feedback about corporate profitability, growth forecast, and the perceived efficiency of the U.S Green Building Council’s LEED rating system. The survey also queried contractors about current and future work breakdown structures for sustainable project delivery as well as their underlying motives for involvement in these projects.
Academics from Arizona State University worked with local industry to develop the survey in 2012 and the survey was deployed in 2013. We sent the survey to 76 contractors and received responses from 21, representing a 27.6% response rate. Respondents include representatives from general contractors, mechanical contractors, and electrical contractors, among others. This paper presents the responses from general contractors as they typically have most contact with the owner and design teams.
ContributorsHolloway, Skyler Brock (Author) / Parrish, Kristen (Thesis director) / Bashford, Howard (Committee member) / Meek, Jeremy (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Del E. Webb Construction (Contributor)
Created2013-05