Matching Items (144)
Filtering by

Clear all filters

150481-Thumbnail Image.png
Description
The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors

The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors (PBHR)), and it identifies the research objectives. Chapters 2 through 6 focus on nitrate removal using the MBfR and PBHR, while chapters 7 through 10 investigate simultaneous reduction of nitrate and another oxidized compound (perchlorate, sulfate, or TCE) in the MBfR. Chapter 11 summarizes the major findings of this research. Chapters 2 and 3 demonstrate nitrate removal in a groundwater and identify the maximum nitrate loadings using a pilot-scale MBfR and a pilot-scale PBHR, respectively. Chapter 4 compares the MBfR and the PBHR for denitrification of the same nitrate-contaminated groundwater. The comparison includes the maximum nitrate loading, the effluent water quality of the denitrification reactors, and the impact of post-treatment on water quality. Chapter 5 theoretically and experimentally demonstrates that the nitrate biomass-carrier surface loading, rather than the traditionally used empty bed contact time or nitrate volumetric loading, is the primary design parameter for heterotrophic denitrification. Chapter 6 constructs a pH-control model to predict pH, alkalinity, and precipitation potential in heterotrophic or hydrogen-based autotrophic denitrification reactors. Chapter 7 develops and uses steady-state permeation tests and a mathematical model to determine the hydrogen-permeation coefficients of three fibers commonly used in the MBfR. The coefficients are then used as inputs for the three models in Chapters 8-10. Chapter 8 develops a multispecies biofilm model for simultaneous reduction of nitrate and perchlorate in the MBfR. The model quantitatively and systematically explains how operating conditions affect nitrate and perchlorate reduction and biomass distribution via four mechanisms. Chapter 9 modifies the nitrate and perchlorate model into a nitrate and sulfate model and uses it to identify operating conditions corresponding to onset of sulfate reduction. Chapter 10 modifies the nitrate and perchlorate model into a nitrate and TCE model and uses it to investigate how operating conditions affect TCE reduction and accumulation of TCE reduction intermediates.
ContributorsTang, Youneng (Author) / Rittmann, Bruce E. (Thesis advisor) / Westerhoff, Paul (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2012
136109-Thumbnail Image.png
Description
Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develop these programs, effective theory and approach are critical to developing

Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develop these programs, effective theory and approach are critical to developing successful programs. Though there are a multitude of theories on successful student development, a focus on self-efficacy is critical. Summer Bridge programs across the country as well as the Bio Bridge summer program at Arizona State University were studied alone and through the lens of Cognitive Self-Efficacy Theory as mentioned in Albert Bandura's "Perceived Self-Efficacy in Cognitive Development and Functioning." Cognitive Self-Efficacy Theory provides a framework for self-efficacy development in academic settings. An analysis of fifteen bridge programs found that a large majority focused on developing academic capabilities and often overlooked development of community and social efficacy. An even larger number failed to focus on personal psychology in managing self-debilitating thought patterns based on published goals. Further, Arizona State University's Bio Bridge program could not be considered successful at developing cognitive self-efficacy or increasing retention as data was inconclusive. However, Bio Bridge was tremendously successful at developing social efficacy and community among participants and faculty. Further research and better evaluative techniques need to be developed to understand the program's effectiveness in cognitive self-efficacy development and retention.
ContributorsTummala, Sailesh Vardhan (Author) / Orchinik, Miles (Thesis director) / Brownell, Sara (Committee member) / Shortlidge, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136004-Thumbnail Image.png
Description
This is a study of the adaptive behaviors of individuals with Autism Spectrum Disorder using the Vineland II Adaptive Behavioral Scale (VABS-II). This scale was used to determine the overall functioning level of individuals with Autism Spectrum Disorder at the beginning, and will be used at the end, of a

This is a study of the adaptive behaviors of individuals with Autism Spectrum Disorder using the Vineland II Adaptive Behavioral Scale (VABS-II). This scale was used to determine the overall functioning level of individuals with Autism Spectrum Disorder at the beginning, and will be used at the end, of a year-long study beginning at Arizona State University. This larger study is determining what the effects are, if any, of a combination of nutritional and dietary treatments in individuals with Autism Spectrum Disorder. However, this paper only examines the VABS-II results of forty-three participants in the study, as well as their hand-grip strength. It was found that individuals with Autism Spectrum Disorder are substantially delayed in all four domains (communication, daily living skills, social skills, and motor skills) of adaptive behaviors measured by the VABS-II, particularly in communication. This study will be completed in May 2013, when it will be determined what the effects of these treatments are, if any.
ContributorsAdams, Rebecca (Author) / Ingram-Waters, Mary (Thesis director) / Krajmalnik-Brown, Rosa (Committee member) / Pollard, Elena (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
136827-Thumbnail Image.png
Description
Collaborative learning has been found to enhance student learning experiences through interaction with peers and instructors in a way that typically does not occur in a traditional lecture course. However, more than half of all collaborative learning structures have failed to last very long after their initial introductions which makes

Collaborative learning has been found to enhance student learning experiences through interaction with peers and instructors in a way that typically does not occur in a traditional lecture course. However, more than half of all collaborative learning structures have failed to last very long after their initial introductions which makes understanding the factors of collaboration that make it successful very important. The purpose of this study was to evaluate collaborative learning in a blended learning course to gauge student perceptions and the factors of collaboration and student demographics that impact that perception. This was done by surveying a sample of students in BIO 282 about their experiences in the BIO 281 course they took previously which was a new introductory Biology course with a blended learning structure. It was found that students agree that collaboration is beneficial as it provides an opportunity to gain additional insight from peers and improve students' understanding of course content. Also, differences in student gender and first generation status have less of an effect on student perceptions of collaboration than differences in academic achievement (grade) bracket.
ContributorsVu, Bethany Thao-Vy (Author) / Stout, Valerie (Thesis director) / Brownell, Sara (Committee member) / Wright, Christian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137712-Thumbnail Image.png
Description
Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated

Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated aquifer in San Diego. These series of treatability studies were also performed to prepare data and mature packed sediment columns for the deployment of the In Situ Microcosm Array (ISMA), a diagnostic device for determining optimal treatments for a contaminated aquifer, at this particular site. First, a control panel for the ISMA’s Injection Module (IM) was created in order to deliver nutrients to the columns. Then, a column treatability study was performed in order to produce columns with an established KB-1® consortium, so that all TCE in the column influent was converted to ethene by the time it had exited the column. Finally, a batch bottle treatability study was performed to determine KB-1®’s effectiveness at remediating both TCE and Cr(VI) from the San Diego ground-water samples. The results from the column study found that KB-1® was able to reduce TCE in mineral media. However, in the presence of site ground-water for the batch bottle study, KB-1® was only able to reduce Cr(VI) and no TCE dechlorination was observed. This result suggests that the dechlorinating culture cannot survive prolonged exposure to Cr(VI). Therefore, future work may involve repeating the batch bottle study with Cr(VI) removed from the groundwater prior to inoculation to determine if KB-1® is then able to dechlorinate TCE.
ContributorsDuong, Benjamin Taylor (Author) / Halden, Rolf (Thesis director) / Torres, Cesar (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Barrett, The Honors College (Contributor) / School of Dance (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
137744-Thumbnail Image.png
Description
The effect of ammonium on microbial fermentation was investigated to improve the efficiency of microbial electrochemical cells (MXC). Electron balances of anaerobic microbial cultures with varying ammonium concentrations (reported as g N-NH4+/L) were used to study the distribution of electrons from different fermentable substrates to acetate, propionate, and methane. Results

The effect of ammonium on microbial fermentation was investigated to improve the efficiency of microbial electrochemical cells (MXC). Electron balances of anaerobic microbial cultures with varying ammonium concentrations (reported as g N-NH4+/L) were used to study the distribution of electrons from different fermentable substrates to acetate, propionate, and methane. Results showed that with a high ammonium concentration (between 2.25 to 3g N-NH4+/L) fewer electrons routed to methane during the fermentation of 300 me-eq./L of electron donors .The majority of electrons (~ 60-80%) in the serum bottles experiments were routed to acetate and propionate for all fermentable substrates with high ammonium concentration. While methane cannot be utilized by anode respiring bacteria (ARBs) to produce current, both acetate and propionate can, which could lead to higher Coulombic efficiencies in MXCs. Experiments in microbial electrolysis cells (MECs) with glucose, lactate, and ethanol were performed. MEC experiments showed low percentage of electrons to current (between 10-30 %), potentially due to low anode surface area (~ 3cm2) used during these experiments. Nevertheless, the fermentation process observed in the MECs was similar to serum bottles results which showed significant diversion of electrons to acetate and propionate (~ 80%) for a control concentration of 0.5 g N-NH4+/L .
ContributorsLozada Guerra, Suyana Patricia (Co-author) / Joseph, Miceli (Co-author) / Krajmalnik-Brown, Rosa (Thesis director) / Torres, Cesar (Committee member) / Young, Michelle (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
136383-Thumbnail Image.png
Description
We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to

We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to enhance current programs at the unit by offering inmates an opportunity to practice literacy and math skills, while also providing exposure to a new academic field (science, and specifically biology). Numerous studies, including a 2005 study from the Arizona Department of Corrections (ADC), have found that vocational programs, including prison education programs, reduce recidivism rates (ADC 2005, Esperian 2010, Jancic 1988, Steurer et al. 2001, Ubic 2002) and may provide additional benefits such as engagement with a world outside the justice system (Duguid 1992), the opportunity for inmates to revise personal patterns of rejecting education that they may regret, and the ability of inmate parents to deliberately set a good example for their children (Hall and Killacky 2008). Teaching in a maximum security prison unit poses special challenges, which include a prohibition on most outside materials (except paper), severe restrictions on student-teacher and student-student interactions, and the inability to perform any lab exercises except limited computer simulations. Lack of literature discussing theoretical and practical aspects of teaching science in such environment has prompted us to conduct an ongoing study to generate notes and recommendations from this class through the use of surveys, academic evaluation of students' work and ongoing feedback from both teachers and students to inform teaching practices in future science classes in high-security prison units.
ContributorsLarson, Anika Jade (Author) / Mor, Tsafrir (Thesis director) / Brownell, Sara (Committee member) / Lockard, Joe (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136660-Thumbnail Image.png
Description
Lactate and methanol have been the most commonly used electron donors in the Krajmalnik-Brown laboratory for efficient microbial dechlorination of trichloroethene (TCE). Our goal was to assess the technical and economic feasibility of molasses and ethanol, two alternative electron donors by evaluating their costs and ability support complete TCE dechlorination

Lactate and methanol have been the most commonly used electron donors in the Krajmalnik-Brown laboratory for efficient microbial dechlorination of trichloroethene (TCE). Our goal was to assess the technical and economic feasibility of molasses and ethanol, two alternative electron donors by evaluating their costs and ability support complete TCE dechlorination to ethene. First, ethanol and molasses, with and without methanol, were evaluated for their abilities to support complete dechlorination in batch serum bottles. Molasses, the cheapest alternative, supported a similar dechlorination performance to lactate in batch experiments, so we then used it in an upflow anaerobic bioreactor (UABR) to test its ability to support rapid dechlorination in this continuous system. Molasses supported 88% TCE conversion to ethene at a hydraulic retention time (HRT) of 13 hours after 80 days of operation in continuous mode. Compared to the UABR operated previously using lactate and methanol, molasses led to a reduction of TCE conversion to ethene, and a possible increase in time required to produce culture. Additionally, when molasses was used as the electron donor, we encountered new difficulties in the operation of the UABR, such as drastic pH changes. Therefore, I conclude that the savings from using molasses is outweighed by the costs associated with the reduction in dechlorination performance and increase in reactor maintenance. I recommend that lactate and methanol continue to be used as the electron donors in the Krajmalnik- Brown dechlorination lab to support fast-rate and cost-effective production of dechlorinating culture in an UABR. Because molasses supported fast rates of dechlorination in the batch experiment, however, it is potentially a better option than lactate and methanol for batch production of culture or for biostimulation, where the aquifer resembles a batch system. I recommend that further studies be done to reach a general conclusion about the feasibility of molasses as an electron donor for other enhanced bioremediation projects.
ContributorsBondank, Emily Nicole (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Delgado, Anca (Committee member) / Torres, Cesar (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2014-12
147619-Thumbnail Image.png
Description

The human gut microbiome is a complex community of microorganisms. These microbes play an important role in host health by contributing essential compounds and acting as a barrier against pathogens. However, these communities and associated functions can be impacted by factors like disease and diet. In particular, microbial fermentation of

The human gut microbiome is a complex community of microorganisms. These microbes play an important role in host health by contributing essential compounds and acting as a barrier against pathogens. However, these communities and associated functions can be impacted by factors like disease and diet. In particular, microbial fermentation of dietary components like polysaccharides, proteins, and fats that reach the gut are being examined to better understand how these biopolymers are utilized and affect community structure. Thus, evaluating the accuracy of methods used to quantify specific macromolecules is crucial to gaining a precise understanding of how gut microbes hydrolyze those substrates. This study presents findings on the accuracy of the Megazyme RS kit (Rapid) modified for high performance liquid chromatography (HPLC) readings and the DC Protein Assay when performed on samples from complex gut media with potato starch treatments and bovine serum albumin (BSA) treatments. Overall, our data indicates that the megazyme RS kit needs further modification to detect expected starch content with the HPLC and that the DC Protein Assay is not suitable for specific protein analysis.

ContributorsKlein, Rachel Marie (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Marcus, Andrew (Committee member) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
141465-Thumbnail Image.png
Description

Recent studies suggest a role for the microbiota in autism spectrum disorders (ASD), potentially arising from their role in modulating the immune system and gastrointestinal (GI) function or from gut–brain interactions dependent or independent from the immune system. GI problems such as chronic constipation and/or diarrhea are common in children

Recent studies suggest a role for the microbiota in autism spectrum disorders (ASD), potentially arising from their role in modulating the immune system and gastrointestinal (GI) function or from gut–brain interactions dependent or independent from the immune system. GI problems such as chronic constipation and/or diarrhea are common in children with ASD, and significantly worsen their behavior and their quality of life. Here we first summarize previously published data supporting that GI dysfunction is common in individuals with ASD and the role of the microbiota in ASD. Second, by comparing with other publically available microbiome datasets, we provide some evidence that the shifted microbiota can be a result of westernization and that this shift could also be framing an altered immune system. Third, we explore the possibility that gut–brain interactions could also be a direct result of microbially produced metabolites.

ContributorsKrajmalnik-Brown, Rosa (Author) / Lozupone, Catherine (Author) / Kang, Dae Wook (Author) / Adams, James (Author) / Biodesign Institute (Contributor)
Created2015-03-12