Matching Items (115)
165750-Thumbnail Image.png
Description

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has the potential to assess community health status by analyzing biomarkers indicative of human health and disease, including diabetes. Used in tandem with current methods, monitoring indicators of diabetes in community wastewater could provide a comprehensive assessment tool for disease prevalence in large and small populations. Specifically, the proposed targeted biomarker evaluated in this study to indicate population-wide diabetes prevalence was 8-hydroxy-2’- deoxyguanosine (8-OHdG). This work combines a rigorous literature review and initial laboratory studies to explore the possibility of diabetes monitoring at the community level using WBE. Here, 24-hour composite wastewater samples were collected from within two wastewater sub-catchments of Greater Tempe, AZ. Overall goals of this study were to: i) Determine the feasibility to detect endogenous markers of diabetes in community wastewater; ii) Assess the potential impact of confounding factors, such as smoking, cancer, and atherosclerosis, through a literature analysis; and iii) Evaluate the socioeconomic status and demographics of the study population. Preliminary results of the experiments suggest this methodology to be feasible, as indicated by the observation of detectable signals of 8-OHdG in community wastewater collected from the sewer infrastructure; however, future work and continued experimentation will be required to address low signal intensity and assay precision and accuracy. Thus, the work presented here provides valuable proof-of-concept data, with detailed information on the method employed and identified opportunities to further determine the relationship between 8-OHdG concentrations in municipal wastewater and diabetes prevalence at the community level.

ContributorsNguyen, Jasmine (Author) / John, Dona (Co-author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Bowes, Devin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Finance (Contributor)
Created2022-05
165754-Thumbnail Image.png
Description

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has the potential to assess community health status by analyzing biomarkers indicative of human health and disease, including diabetes. Used in tandem with current methods, monitoring indicators of diabetes in community wastewater could provide a comprehensive assessment tool for disease prevalence in large and small populations. Specifically, the proposed targeted biomarker evaluated in this study to indicate population-wide diabetes prevalence was 8-hydroxy-2’-deoxyguanosine (8-OHdG). This work combines a rigorous literature review and initial laboratory studies to explore the possibility of diabetes monitoring at the community level using WBE. Here, 24-hour composite wastewater samples were collected from within two wastewater sub-catchments of Greater Tempe, AZ. Overall goals of this study were to: i) Determine the feasibility to detect endogenous markers of diabetes in community wastewater; ii) Assess the potential impact of confounding factors, such as smoking, cancer, and atherosclerosis, through a literature analysis; and iii) Evaluate the socioeconomic status and demographics of the study population. Preliminary results of the experiments suggest this methodology to be feasible, as indicated by the observation of detectable signals of 8-OHdG in community wastewater collected from the sewer infrastructure; however, future work and continued experimentation will be required to address low signal intensity and assay precision and accuracy. Thus, the work presented here provides valuable proof-of-concept data, with detailed information on the method employed and identified opportunities to further determine the relationship between 8-OHdG concentrations in municipal wastewater and diabetes prevalence at the community level.

ContributorsJohn, Dona (Author) / Nguyen, Jasmine (Co-author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Bowes, Devin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor)
Created2022-05
165842-Thumbnail Image.png
Description
Mounting evidence suggests that gender biases favoring men and racial biases favoring whites and Asians contribute to the underrepresentation of women and underrepresented minorities (URM) in science, technology, engineering, and mathematics (STEM). Systemic issues caused by gender and racial biases create barriers that prevent women and URM from entering STEM

Mounting evidence suggests that gender biases favoring men and racial biases favoring whites and Asians contribute to the underrepresentation of women and underrepresented minorities (URM) in science, technology, engineering, and mathematics (STEM). Systemic issues caused by gender and racial biases create barriers that prevent women and URM from entering STEM from the structure of education to admission or promotions to higher-level positions. One of these barriers is unconscious biases that impact the quality of letters of recommendation for women and URM and their success in application processes to higher education. Though letters of recommendation provide a qualitative aspect to an application and can reveal the typical performance of the applicant, research has found that the unstructured nature of the traditional recommendation letter allows for gender and racial bias to impact the quality of letters of recommendation. Standardized letters of recommendation have been implemented in various fields and have been found to reduce the presence of bias in recommendation letters. This paper reviews the trends seen across the literature regarding equity in the use of letters of recommendation for undergraduates.
ContributorsKolath, Nina (Author) / Brownell, Sara (Thesis director) / Goodwin, Emma (Committee member) / Barrett, The Honors College (Contributor) / School of Criminology and Criminal Justice (Contributor) / School of Life Sciences (Contributor)
Created2022-05
164956-Thumbnail Image.png
Description

Currently, there are a number of studies confirming the link between exposure to certain chemicals, notably pesticides (Costello et. al. 2009, Wang et. al 2014), heavy metals such as arsenic (Chen et. al. 2017), ambient air pollution (Chen et. al. 2016), and chemicals specific to certain industrial fields (Nielsen et.

Currently, there are a number of studies confirming the link between exposure to certain chemicals, notably pesticides (Costello et. al. 2009, Wang et. al 2014), heavy metals such as arsenic (Chen et. al. 2017), ambient air pollution (Chen et. al. 2016), and chemicals specific to certain industrial fields (Nielsen et. al. 2021). However, few papers have attempted to perform a widespread analysis of the factors associated with Parkinson’s disease to identify whether the risk of developing the disease is dependent on different factors regionally. The goal of my thesis project is to complete a meta-analysis of toxins- where exposure may occur in both residential and occupational settings- that are associated with Parkinson’s to determine such regional differences and to identify any gaps in current literature, which may direct the course of future research in the field. As seen in this paper, it appears that occupational exposure to toxins appears to have the greatest impact on the risk of developing Parkinson’s disease, particularly pesticides and industrial toxins. However, there are numerous gaps with regards to data collection, regions studied, and quantification of toxin concentrations. However, this data may be useful in identifying at-risk populations if more extensive incremental and biopsy data regarding these toxins is provided.

ContributorsAravindan, Anumitha (Author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Newell, Melanie (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
191008-Thumbnail Image.png
Description
Heavy metals and persistent organic pollutants contribute to human health risks worldwide. Among the most common routes of exposure to pollutants for humans are through the consumption of contaminated water and food, with fish being among the greatest vectors for ingestion of heavy metals in humans, particularly mercury.This dissertation consists

Heavy metals and persistent organic pollutants contribute to human health risks worldwide. Among the most common routes of exposure to pollutants for humans are through the consumption of contaminated water and food, with fish being among the greatest vectors for ingestion of heavy metals in humans, particularly mercury.This dissertation consists of three chapters with a central theme of investigating heavy metal and persistent organic pollutant concentrations in fish and corned beef, which are two commonly consumed food items in American Samoa. A literature review illustrated that historically the primary pollutants of concern in fish muscle tissue from American Samoa have been mercury, arsenic, and polycyclic aromatic hydrocarbon mixtures. To better understand the changes in heavy metals and persistent organic pollutants in fish, this study reports an updated data set, comparing concentrations in pollutants as they have changed over time. To further investigate pollutants in fish tissue, 77 locally caught and commonly consumed fish were analyzed for heavy metals and persistent organic pollutants, and baseline human health risk assessments were calculated for contaminants that had available oral reference doses. While in American Samoa collecting fish for contaminant analyses, it was realized that canned corned beef appeared to be more commonly consumed than fresh fish. An IRB approved consumption survey revealed that 89% of American Samoan adults regularly consume fish, which is the same percentage of people that reported eating canned corned beef, indicating a dramatic increase in this food item to their diet since its introduction in the 20th century. Results of this study indicate that fish muscle tissue generally has higher heavy metal concentrations than canned corned beef, and that mercury continues to be a main contaminant of concern when consuming fresh and canned fish in American Samoa. While none of the heavy metal concentrations in corned beef exceeded calculated action levels, these foods might contribute to negative health outcomes in other ways. One of the main findings of this study is that either the presence or the ability to detect persistent organic pollutant concentrations are increasing in fish tissue and should be periodically monitored to adequately reflect current conditions.
ContributorsLewis, Tiffany Beth (Author) / Polidoro, Beth (Thesis advisor) / Neuer, Susanne (Thesis advisor) / Halden, Rolf (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2023
165038-Thumbnail Image.png
Description

The COVID-19 pandemic caused uncertainty and changing public health recommendations across the world as our understanding of the SARS-CoV-2 virus changed. Following a preliminary assessment by the World Health Organization, non-steroidal anti-inflammatory drugs were said to worsen symptoms and should be avoided before the recommendation was subsequently revoked. There also

The COVID-19 pandemic caused uncertainty and changing public health recommendations across the world as our understanding of the SARS-CoV-2 virus changed. Following a preliminary assessment by the World Health Organization, non-steroidal anti-inflammatory drugs were said to worsen symptoms and should be avoided before the recommendation was subsequently revoked. There also was pain associated with infection, leading to the hypothesis that use of over-the-counter pain medication increases may correlate with increases of SARS-CoV-2 infections. Wastewater samples were collected from two communities in Tempe, AZ from December 2019 to July 2020 (n = 35) and were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify levels of acetaminophen, ibuprofen and their metabolites, acetaminophen sulfate and carboxy-ibuprofen. Results showed 100% detection frequency of all analytes in all samples across the duration of the study. Mass loadings of acetaminophen (918.4 g day-1 +/- 354.8 g day-1) were higher than ibuprofen (182.9 g day-1 +/- 49.8 g day-1), potentially driven by flushing behaviors rather than consumption activities. However, ibuprofen was more heavily consumed than acetaminophen across all days of the study period. Comparisons to COVID-19 clinical cases data showed increased use in ibuprofen with increases in clinical cases loads, while acetaminophen showed no change, suggesting ibuprofen was the over the counter (OTC) medication of choice during the first wave of the pandemic.

ContributorsSavic, Sonja (Author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Life Sciences (Contributor)
Created2022-05
Description

Mental health conditions can impact college students’ social and academic achievements. As such, students may disclose mental illnesses on medical school applications. Yet, no study has investigated to what extent disclosure of a mental health condition impacts medical school acceptance. We designed an audit study to address this gap. We

Mental health conditions can impact college students’ social and academic achievements. As such, students may disclose mental illnesses on medical school applications. Yet, no study has investigated to what extent disclosure of a mental health condition impacts medical school acceptance. We designed an audit study to address this gap. We surveyed 99 potential admissions committee members from at least 43 unique M.D.-granting schools in the U.S. Participants rated a fictitious portion of a medical school application on acceptability, competence, and likeability. They were randomly assigned to a condition: an application that explained a low semester GPA due to a mental health condition, an application that explained a low semester GPA due to a physical health condition, or an application that had a low semester GPA but did not describe any health condition. Using ANOVAs, multinomial regression, and open-coding, we found that committee members do not rate applications lower when a mental health condition is revealed. When asked about their concerns regarding the application, 27.0% of participants who received an application that revealed a mental health condition mentioned it as a concern; 14.7% of participants who received an application that revealed a physical health condition mentioned it as a concern. Committee members were also asked about when revealing a mental health condition would be beneficial and when it would be detrimental. This work indicates that medical school admissions committee members do not exhibit a bias towards mental health conditions and provides recommendations on how to discuss mental illness on medical school applications.

ContributorsAbraham, Anna (Author) / Brownell, Sara (Thesis director) / Cooper, Katelyn (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2022-05
Description

Phthalates are ubiquitous in the built environment and are used across various fields, despite known endocrine disruptive properties, and other associated health hazards, including abnormalities in reproductive health and development. I investigated the presence of phthalates in the built environment using the Health Product Declaration (HPD) repository to survey for

Phthalates are ubiquitous in the built environment and are used across various fields, despite known endocrine disruptive properties, and other associated health hazards, including abnormalities in reproductive health and development. I investigated the presence of phthalates in the built environment using the Health Product Declaration (HPD) repository to survey for products containing these chemicals, investigated the literature for possible health effects and alternatives to phthalates, and conducted a laboratoy-based feasibility study of urinary biomarkers associated with phthalates using wastewater-based epidemiology (WBE) on a US university campus at the building-scale. Of the 5,278 products in the HPD repository, 73 contained phthalates and were most commonly found in windows, doors, flooring, sealants, insulations, and furnishings. Alternative plasticizers (cardanol, epoxidized soybean oil, hydrogenated castor oil) usage were identified in 10 products from HPD repository. The two wastewater samples analyzed by liquid chromatography-tandem mass spectrometry (LC-MS-MS) showed that dimethyl phthalate (DMP) was detectable, as well as its human metabolite, monomethyl phthalate (MMP), observed at a concentration of 163-202 ng/L. These results indicate low human exposure from the building materials in the limited convenience sample investigated. Future studies of building scale wastewater-based epidemiology are recommended to investigate these and other phthalates commonly found in the built environment, including diisononyl phthalate (DINP) and diisononyl hexahydrophthalate (DINCH).

ContributorsGroves, Megan (Author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
187840-Thumbnail Image.png
Description
ABSTRACTWith the National Aeronautics and Space Administration (NASA) Psyche Mission, humans will soon have the first opportunity to explore a new kind of planetary body: one composed mostly of metal as opposed to stony minerals or ices. Identifying the composition of asteroids from Earth-based observations has been an ongoing challenge.

ABSTRACTWith the National Aeronautics and Space Administration (NASA) Psyche Mission, humans will soon have the first opportunity to explore a new kind of planetary body: one composed mostly of metal as opposed to stony minerals or ices. Identifying the composition of asteroids from Earth-based observations has been an ongoing challenge. Although optical reflectance spectra, radar, and orbital dynamics can constrain an asteroid’s mineralogy and bulk density, in many cases there is not a clear or precise match with analogous materials such as meteorites. Additionally, the surfaces of asteroids and other small, airless planetary bodies can be heavily modified over geologic time by exposure to the space environment. To accurately interpret remote sensing observations of metal-rich asteroids, it is therefore necessary to understand how the processes active on asteroid surfaces affect metallic materials. This dissertation represents a first step toward that understanding. In collaboration with many colleagues, I have performed laboratory experiments on iron meteorites to simulate solar wind ion irradiation, surface heating, micrometeoroid bombardment, and high-velocity impacts. Characterizing the meteorite surface’s physical and chemical properties before and after each experiment can constrain the effects of each process on a metal-rich surface in space. While additional work will be needed for a complete understanding, it is nevertheless possible to make some early predictions of what (16) Psyche’s surface regolith might look like when humans observe it up close. Moreover, the results of these experiments will inform future exploration beyond asteroid Psyche as humans attempt to understand how Earth’s celestial neighborhood came to be.
ContributorsChristoph, John Morgan M. (Author) / Elkins-Tanton, Linda (Thesis advisor) / Williams, David (Committee member) / Dukes, Catherine (Committee member) / Sharp, Thomas (Committee member) / Bell III, James (Committee member) / Arizona State University (Publisher)
Created2023
193028-Thumbnail Image.png
Description
Similar-identity role models, including instructors, can benefit science undergraduates by enhancing their self-efficacy and sense of belonging. However, for students to have similar-identity role models based on identities that can be hidden, instructors need to disclose their identities. For concealable stigmatized identities (CSIs) – identities that can be hidden and

Similar-identity role models, including instructors, can benefit science undergraduates by enhancing their self-efficacy and sense of belonging. However, for students to have similar-identity role models based on identities that can be hidden, instructors need to disclose their identities. For concealable stigmatized identities (CSIs) – identities that can be hidden and carry negative stereotypes – the impersonal and apolitical culture cultivated in many science disciplines likely makes instructor CSI disclosure unlikely. This dissertation comprises five studies I conducted to assess the presence of instructor role models with CSIs in undergraduate science classrooms and evaluate the impact on undergraduates of instructor CSI disclosure. I find that science instructors report CSIs at lower rates than undergraduates and typically keep these identities concealed. Additionally, I find that women instructors are more likely to disclose their CSIs to students compared to men. To assess the impact of instructor CSI disclosure on undergraduates, I report on findings from a descriptive exploratory study and a controlled field experiment in which an instructor reveals an LGBTQ+ identity. Undergraduates, especially those who also identify as LGBTQ+, benefit from instructor LGBTQ+ disclosure. Additionally, the majority of undergraduate participants agree that an instructor revealing an LGBTQ+ identity during class is appropriate. Together, the results presented in this dissertation highlight the current lack of instructor role models with CSIs and provide evidence of student benefits that may encourage instructors to reveal CSIs to undergraduates and subsequently provide much-needed role models. I hope this work can spark self-reflection among instructors to consider revealing CSIs to students and challenge the assumption that science environments should be devoid of personal identities.
ContributorsBusch, Carly Anne (Author) / Cooper, Katelyn (Thesis advisor) / Brownell, Sara (Thesis advisor) / Collins, James (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2024