Matching Items (124)
136898-Thumbnail Image.png
Description
One of the major challenges that were yet to be solved for solid phase peptide synthesis was the lack of an efficient peptide sequencing technique that was less hazardous, easier to perform , and was more cost-effective. Sequencing peptides were held important in the field of Chemistry and Biochemistry because

One of the major challenges that were yet to be solved for solid phase peptide synthesis was the lack of an efficient peptide sequencing technique that was less hazardous, easier to perform , and was more cost-effective. Sequencing peptides were held important in the field of Chemistry and Biochemistry because it aided in drug discovery, finding ligands that bind to a specific target protein and finding alternative agents in transporting molecules to its desired location. Therefore, the overall purpose of this experiment was to develop a method of solid phase sequencing technique that was more environmental friendly, sequences at a faster rate, and was more cost-effective.
ContributorsCordovez, Lalaine Anne Ordiz (Author) / Woodbury, Neal (Thesis director) / Zhao, Zhan-Gong (Committee member) / Legutki, Joseph Barten (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
137400-Thumbnail Image.png
Description
DNA methylation, a subset of epigenetics, has been found to be a significant marker associated with variations in gene expression and activity across the entire human genome. As of now, however, there is little to no information about how DNA methylation varies between different tissues inside a singular person's body.

DNA methylation, a subset of epigenetics, has been found to be a significant marker associated with variations in gene expression and activity across the entire human genome. As of now, however, there is little to no information about how DNA methylation varies between different tissues inside a singular person's body. By using research data from a preliminary study of lean and obese clinical subjects, this study attempts to put together a profile of the differences in DNA methylation that can be observed between two particular body tissues from this subject group: blood and skeletal muscle. This study allows us to start describing the changes that occur at the epigenetic level that influence how differently these two tissues operate, along with seeing how these tissues change between individuals of different weight classes, especially in the context of the development of symptoms of Type 2 Diabetes.
ContributorsRappazzo, Micah Gabriel (Author) / Coletta, Dawn (Thesis director) / Katsanos, Christos (Committee member) / Dinu, Valentin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2013-12
136626-Thumbnail Image.png
Description
Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional

Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional regulation by regulatory non-coding RNAs, such as microRNAs or RNA binding proteins defects of which have been implicated in diseases such as cancer. Despite the increasing level of information, functional understanding of the molecular mechanisms involved in transcription is still poorly understood, nor is it clear why APA is necessary at a cell or tissue-specific level. To address these questions I wanted to develop a set of sensor strain plasmids capable of detecting cleavage and polyadenylation in vivo, inject the complete sensor strain plasmid into C. elegans and prepare stable transgenic lines, and perform proof-of-principle RNAi feeding experiments targeting genes associated with the cleavage and polyadenylation complex machinery. I demonstrated that it was possible to create a plasmid capable of detecting cleavage and polyadenylation in C. elegans; however, issues arose during the RNAi assays indicating the sensor strain plasmid was not sensitive enough to the RNAi to effectively detect in the worms. Once the problems involved with sensitivity and variability in the RNAi effects are resolved, the plasmid would be able to better address questions regarding the functional understanding of molecular mechanisms involved in transcription termination.
ContributorsWilky, Henry Patrick (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Blazie, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136383-Thumbnail Image.png
Description
We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to

We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to enhance current programs at the unit by offering inmates an opportunity to practice literacy and math skills, while also providing exposure to a new academic field (science, and specifically biology). Numerous studies, including a 2005 study from the Arizona Department of Corrections (ADC), have found that vocational programs, including prison education programs, reduce recidivism rates (ADC 2005, Esperian 2010, Jancic 1988, Steurer et al. 2001, Ubic 2002) and may provide additional benefits such as engagement with a world outside the justice system (Duguid 1992), the opportunity for inmates to revise personal patterns of rejecting education that they may regret, and the ability of inmate parents to deliberately set a good example for their children (Hall and Killacky 2008). Teaching in a maximum security prison unit poses special challenges, which include a prohibition on most outside materials (except paper), severe restrictions on student-teacher and student-student interactions, and the inability to perform any lab exercises except limited computer simulations. Lack of literature discussing theoretical and practical aspects of teaching science in such environment has prompted us to conduct an ongoing study to generate notes and recommendations from this class through the use of surveys, academic evaluation of students' work and ongoing feedback from both teachers and students to inform teaching practices in future science classes in high-security prison units.
ContributorsLarson, Anika Jade (Author) / Mor, Tsafrir (Thesis director) / Brownell, Sara (Committee member) / Lockard, Joe (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor)
Created2015-05
132219-Thumbnail Image.png
Description
This thesis contains three chapters, all of which involve using culturally inclusive education to explore the experiences of religious undergraduate biology students. The first chapter is an essay entitled "Toward Culturally Inclusive Undergraduate Biology Education," which describes a literature review performed with the aim of characterizing the landscape of cultural

This thesis contains three chapters, all of which involve using culturally inclusive education to explore the experiences of religious undergraduate biology students. The first chapter is an essay entitled "Toward Culturally Inclusive Undergraduate Biology Education," which describes a literature review performed with the aim of characterizing the landscape of cultural competence and related terms for biology educators and biology education researchers. This chapter highlights the use of 16 different terms related to cultural competence and presents these terms, their definitions, and highlights their similarities and differences. This chapter also identifies gaps in the cultural competence literature, and presents a set of recommendations to support better culturally inclusive interventions in undergraduate science education. The second chapter, entitled "Different Evolution Acceptance Instruments Lead to Different Research Findings," describes a study in which the source of 30 years of conflicting research on the relationship between evolution acceptance and evolution understanding was determined. The results of this study showed that different instruments used to measure evolution acceptance sometimes lead to different research results and conclusions. The final chapter, entitled "Believing That Evolution is Atheistic is Associated with Poor Evolution Education Outcomes Among Religious College Students," describes a study characterizing definitions of evolution that religious undergraduate biology students may hold, and examines the impact that those definitions of evolution have on multiple outcome variables. In this study, we found that among the most religious students, those who thought evolution is atheistic were less accepting of evolution, less comfortable learning evolution, and perceived greater conflict between their personal religious beliefs and evolution than those who thought evolution is agnostic.
ContributorsDunlop, Hayley Marie (Author) / Brownell, Sara (Thesis director) / Collins, James (Committee member) / Barnes, M. Elizabeth (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
In eukaryotes, most messenger RNA precursors (pre-mRNA) undergo extensive processing, leading to the cleavage of the transcript followed by the addition of a poly(A) tail. This process is executed by a large complex known as the Cleavage and Polyadenylation Complex (CPC). Its central subcomplex, the Cleavage and Polyadenylation Specificity Factor

In eukaryotes, most messenger RNA precursors (pre-mRNA) undergo extensive processing, leading to the cleavage of the transcript followed by the addition of a poly(A) tail. This process is executed by a large complex known as the Cleavage and Polyadenylation Complex (CPC). Its central subcomplex, the Cleavage and Polyadenylation Specificity Factor (CPSF) complex is responsible for recognizing a short hexameric element AAUAAA located at the 3’end in the nascent mRNA molecule and catalyzing the pre-mRNA cleavage. In the round nematode C. elegans, the cleavage reaction is executed by a subunit of this complex named CPSF3, a highly conserved RNA endonuclease. While the crystal structure of its human ortholog CPSF73 has been recently identified, we still do not understand the molecular mechanisms and sequence specificity used by this protein to induce cleavage, which in turn would help to understand how this process is executed in detail. Additionally, we do not understand in additional factors are needed for this process. In order to address these issues, we performed a comparative analysis of the CPSF3 protein in higher eukaryotes to identify conserved functional domains. The overall percent identities for members of the CPSF complex range from 33.68% to 56.49%, suggesting that the human and C. elegans orthologs retain a high level of conservation. CPSF73 is the protein with the overall highest percent identity of the CPSF complex, with its active site-containing domain possessing 74.60% identity with CPSF3. Additionally, we gathered and expressed using a bacterial expression system CPSF3 and a mutant, which is unable to perform the cleavage reaction, and developed an in vitro cleavage assay to test whether CPSF3 activity is necessary and sufficient to induce nascent mRNA cleavage. This project establishes tools to better understand how CPSF3 functions within the CPC and sheds light on the biology surrounding the transcription process as a whole.
ContributorsGallante, Christina (Author) / Mangone, Marco (Thesis director) / Sharma, Shalini (Committee member) / Hrach, Heather (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131586-Thumbnail Image.png
Description
Dielectrophoresis has been shown in the recent past to successfully separate bioparticles of very subtle differences at high resolutions using biophysical forces. In this study, we test the biophysical differences of methicillin resistant and susceptible Staph. aureus that are known to have very similar genomes by using a modified gradient

Dielectrophoresis has been shown in the recent past to successfully separate bioparticles of very subtle differences at high resolutions using biophysical forces. In this study, we test the biophysical differences of methicillin resistant and susceptible Staph. aureus that are known to have very similar genomes by using a modified gradient insulator-based dielectrophoresis device (g-iDEP). MRSA is commonly seen in hospitals and is the leading killer of infectious bacteria, claiming the lives of around 10,000 people annually. G-iDEP improves many capabilities within the DEP field including sample size, cost, ease of use and analysis time. This is a promising foundation to creating a more clinically optimized diagnostic tool for both separation and detection of bacteria in the healthcare field. The capture on-set potential for fluorescently tagged MRSA (801 ± 34V) is higher than fluorescently tagged MSSA (610 ± 32V), resulting in a higher electrokinetic to dielectrophoretic mobility ratio for MRSA. Since the strains have proven to be genomically similar through sequencing, it is reasonable to attribute this significant biophysical difference to the added PBP2a enzyme in MRSA. These results are consistent with other bacterial studied within in this device and have proven to be reproducible.
ContributorsSmithers, Jared (Author) / Hayes, Mark (Thesis director) / Woodbury, Neal (Committee member) / School of Criminology and Criminal Justice (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131567-Thumbnail Image.png
Description
The successful reduction of CO2 and protons by a light-induced cobalt porphyrin/cytb562 hybrid metalloenzyme in water is reported. Incorporation of the porphyrin into a protein scaffold results in increases in CO and H2 production over naked porphyrin. Rational point mutations to the CoPPIX binding site of cytb562 modulate production,

The successful reduction of CO2 and protons by a light-induced cobalt porphyrin/cytb562 hybrid metalloenzyme in water is reported. Incorporation of the porphyrin into a protein scaffold results in increases in CO and H2 production over naked porphyrin. Rational point mutations to the CoPPIX binding site of cytb562 modulate production, indicating possible further improvements in catalytic activity.
ContributorsGwerder, Noah D (Author) / Ghirlanda, Giovanna (Thesis director) / Williams, Peter (Committee member) / Mangone, Marco (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132690-Thumbnail Image.png
Description
Diabesity is a global epidemic affecting millions worldwide. Diabesity is the term given to the link between obesity and Type II diabetes. It is estimated that ~90% of patients diagnosed with Type II diabetes are overweight or have struggled with excess body fat in the past. Type II diabetes is

Diabesity is a global epidemic affecting millions worldwide. Diabesity is the term given to the link between obesity and Type II diabetes. It is estimated that ~90% of patients diagnosed with Type II diabetes are overweight or have struggled with excess body fat in the past. Type II diabetes is characterized by insulin resistance which is an impaired response of the body to insulin that leads to high blood glucose levels. Adipose tissue, previously thought of as an inert tissue, is now recognized as a major endocrine organ with an important role in the body's immune response and the development of chronic inflammation. It is speculated that adipose tissue inflammation is a major contributor to insulin resistance particular to Type II diabetes. This literature review explores the popular therapeutic targets and marketed drugs for the treatment of Type II diabetes and their role in decreasing adipose tissue inflammation. rAGE is currently in pre-clinical studies as a possible target to combat adipose tissue inflammation due to its relation to insulin resistance. Metformin and Pioglitazone are two drugs already being marketed that use unique chemical pathways to increase the production of insulin and/or decrease blood glucose levels. Sulfonylureas is one of the first FDA approved drugs used in the treatment of Type II diabetes, however, it has been discredited due to its life-threatening side effects. Bariatric surgery is a form of invasive surgery to rid the body of excess fat and has shown to normalize blood glucose levels. These treatments are all secondary to lifestyle changes, such as diet and exercise which can help halt the progression of Type II diabetes patients.
ContributorsRobles, Alondra Maria (Author) / Woodbury, Neal (Thesis director) / Redding, Kevin (Committee member) / Allen, James (Committee member) / Hendrickson, Kirstin (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132725-Thumbnail Image.png
Description
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease which occurs in approximately 1 in 3,500 male births. This disease is characterized by progressive muscle wasting and causes premature death. One of the earliest symptoms of this disease is mitochondrial dysfunction. Dystrophin is a protein found under the sarcolemma. The

Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease which occurs in approximately 1 in 3,500 male births. This disease is characterized by progressive muscle wasting and causes premature death. One of the earliest symptoms of this disease is mitochondrial dysfunction. Dystrophin is a protein found under the sarcolemma. The N terminus binds to actin and the C terminus binds to dystrophin glycoprotein complex (DGC). DMD is caused by mutations in the dystrophin gene. C. elegans possess an ortholog of dystrophin, DYS-1. Though there is evidence that C. elegans can be used as a model organism to model DMD, nematode DGC has not been well characterized. Additionally, while we know that mitochondrial dysfunction has been found in humans and other model organisms, this has not been well defined in C. elegans. In order to address these issues, we crossed the SJ4103 worm strain (myo-3p::GFP(mit)) with dys-1(cx18) in order to visualize and quantify changes in mitochondria in a dys-1 background. SJ4103;cx18 nematodes were found to have less mitochondrial than SJ4103 which suggests mitochondrial dysfunction does occur in dys-1 worms. Furthermore, mitochondrial dysfunction was studied by knocking down members of the DGC, dys-1, dyb-1, sgn-1, sgca-1, and sgcb-1 in SJ4103 strain. Knock down of each gene resulted in decrease in abundance of mitochondria which suggests that each member of the DGC contributes to the overall health of nematode muscle. The ORF of dyb-1 was successfully cloned and tagged with GFP in order to visualize this DGC member C. elegans. Imaging of the transgenic dyb-1::GFP worm shows green fluoresce expressed in which suggests that dyb-1 is a functional component of the muscle fibers. This project will enable us to better understand the effects of dystrophin deficiency on mitochondrial function as well as visualize the expression of certain members of the DGC in order to establish C. elegans as a good model organism to study this disease.
ContributorsObrien, Shannon Nishino (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Hrach, Heather (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05