Matching Items (127)
148154-Thumbnail Image.png
Description

Since the start of the COVID 19 pandemic there has undoubtedly been an increase in social distancing orders, isolation, and overall general stress. The current outbreak has been proven to have a heavy impact on issues involving mental health. Social distancing mandates contributed to isolation, which in turn caused a

Since the start of the COVID 19 pandemic there has undoubtedly been an increase in social distancing orders, isolation, and overall general stress. The current outbreak has been proven to have a heavy impact on issues involving mental health. Social distancing mandates contributed to isolation, which in turn caused a surge in psychiatric disorders, either newly onset or exacerbating preexisting conditions (Torales, et al, 2020). Due to significant alterations in daily life, an increase in physical inactivity has already been proven to lead to deterioration of cardiovascular health (Pecanha et al, 2020). Stay at home orders have prevented otherwise healthy people from keeping up their daily exercise and eating habits, contributing to a heightened amount of mental health and hypertensive related issues.<br/>In addition to these health concerns, the pandemic has put stress upon pharmaceutical management practices. Drug utilization surges have led to an impact on patient care and management which requires careful measures to be taken to reduce the inflow of sick patients (Badreldin and Atallah, 2020). A global drug shortage has been a result of these drug utilizations. Understanding the alterations in the usage of specific medications such as prescription psychotropics, antihypertensive drugs, and antidiabetic agents can aid in population management and drug shortages.

ContributorsCastro, Ana Maria (Author) / Martin, Thomas (Thesis director) / Nunez, Diane (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147894-Thumbnail Image.png
Description

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum

This research endeavor explores the 1964 reasoning of Irish physicist John Bell and how it pertains to the provoking Einstein-Podolsky-Rosen Paradox. It is necessary to establish the machinations of formalisms ranging from conservation laws to quantum mechanical principles. The notion that locality is unable to be reconciled with the quantum paradigm is upheld through analysis and the subsequent Aspect experiments in the years 1980-1982. No matter the complexity, any local hidden variable theory is incompatible with the formulation of standard quantum mechanics. A number of strikingly ambiguous and abstract concepts are addressed in this pursuit to deduce quantum's validity, including separability and reality. `Elements of reality' characteristic of unique spaces are defined using basis terminology and logic from EPR. The discussion draws directly from Bell's succinct 1964 Physics 1 paper as well as numerous other useful sources. The fundamental principle and insight gleaned is that quantum physics is indeed nonlocal; the door into its metaphysical and philosophical implications has long since been opened. Yet the nexus of information pertaining to Bell's inequality and EPR logic does nothing but assert the impeccable success of quantum physics' ability to describe nature.

ContributorsRapp, Sean R (Author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
151842-Thumbnail Image.png
Description
This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, ``The Antennae''), equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3) Minor mergers are less energetic than

This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, ``The Antennae''), equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3) Minor mergers are less energetic than major mergers, but more common in the observable universe and, thus, likely played a pivotal role in the formation of most large galaxies. Centers of mergers host vigorous star formation from high gas density and turbulence and are surveyed over cosmological distances. However, the tidal debris resulting from these mergers have not been well studied. Such regions have large reservoirs of gaseous material that can be used as fuel for subsequent star formation but also have lower gas density. Tracers of star formation at the local and global scale have been examined for three tidal tails in two minor merger systems. These tracers include young star cluster populations, H-alpha, and [CII] emission. The rate of apparent star formation derived from these tracers is compared to the gas available to estimate the star formation efficiency (SFE). The Western tail of NGC 2782 formed isolated star clusters while massive star cluster complexes are found in the UGC 10214 (``The Tadpole'') and Eastern tail of NGC 2782. Due to the lack of both observable CO and [CII] emission, the observed star formation in the Western tail of NGC 2782 may have a low carbon abundance and represent only the first round of local star formation. While the Western tail has a normal SFE, the Eastern tail in the same galaxy has an low observed SFE. In contrast, the Tadpole tidal tail has a high observed star formation rate and a corresponding high SFE. The low SFE observed in the Eastern tail of NGC 2782 may be due to its origin as a splash region where localized gas heating is important. However, the other tails may be tidally formed regions where gravitational compression likely dominates and enhances the local star formation.
ContributorsKnierman, Karen A (Author) / Scowen, Paul (Thesis advisor) / Groppi, Christopher (Thesis advisor) / Mauskopf, Philip (Committee member) / Windhorst, Rogier (Committee member) / Jansen, Rolf (Committee member) / Arizona State University (Publisher)
Created2013
151356-Thumbnail Image.png
Description
A thorough exploration of star formation necessitates observation across the electromagnetic spectrum. In particular, observations in the submillimeter and ultra-violet allow one to observe very early stage star formation and to trace the evolution from molecular cloud collapse to stellar ignition. Submillimeter observations are essential for piercing the heart of

A thorough exploration of star formation necessitates observation across the electromagnetic spectrum. In particular, observations in the submillimeter and ultra-violet allow one to observe very early stage star formation and to trace the evolution from molecular cloud collapse to stellar ignition. Submillimeter observations are essential for piercing the heart of heavily obscured stellar nurseries to observe star formation in its infancy. Ultra-violet observations allow one to observe stars just after they emerge from their surrounding environment, allowing higher energy radiation to escape. To make detailed observations of early stage star formation in both spectral regimes requires state-of-the-art detector technology and instrumentation. In this dissertation, I discuss the calibration and feasibility of detectors developed by Lawrence Berkeley National Laboratory and specially processed at the Jet Propulsion Laboratory to increase their quantum efficiency at far-ultraviolet wavelengths. A cursory treatment of the delta-doping process is presented, followed by a thorough discussion of calibration procedures developed at JPL and in the Laboratory for Astronomical and Space Instrumentation at ASU. Subsequent discussion turns to a novel design for a Modular Imager Cell forming one possible basis for construction of future large focal plane arrays. I then discuss the design, fabrication, and calibration of a sounding rocket imaging system developed using the MIC and these specially processed detectors. Finally, I discuss one scientific application of sub-mm observations. I used data from the Heinrich Hertz Sub-millimeter Telescope and the Sub-Millimeter Array (SMA) to observe sub-millimeter transitions and continuum emission towards AFGL 2591. I tested the use of vibrationally excited HCN emission to probe the protostellar accretion disk structure. I measured vibrationally excited HCN line ratios in order to elucidate the appropriate excitation mechanism. I find collisional excitation to be dominant, showing the emission originates in extremely dense (n&sim10;11 cm-3), warm (T&sim1000; K) gas. Furthermore, from the line profile of the v=(0, 22d, 0) transition, I find evidence for a possible accretion disk.
ContributorsVeach, Todd Justin (Author) / Scowen, Paul A (Thesis advisor) / Groppi, Christopher E (Thesis advisor) / Beasley, Matthew N (Committee member) / Rhoads, James E (Committee member) / Windhorst, Rogier A (Committee member) / Arizona State University (Publisher)
Created2012
148409-Thumbnail Image.png
Description

Women’s roles in society have changed significantly throughout the years. The movement to support the rights of women has been ongoing throughout the evolution of society but has been especially prevalent in the last century. The 1960s are when women began to enter the workforce instead of being limited to

Women’s roles in society have changed significantly throughout the years. The movement to support the rights of women has been ongoing throughout the evolution of society but has been especially prevalent in the last century. The 1960s are when women began to enter the workforce instead of being limited to presuming roles as homemakers. Since that point in time, women have continued to thrive in the workforce and have pursued a larger variety of positions in various fields. Even though the opportunities for women continue to grow, there still seems to be an underrepresentation of women in science, technology, engineering, and mathematics (STEM) related fields. The underrepresentation of women pursuing physician and entrepreneurship roles in STEM will be analyzed and the challenges this group of people specifically encounter will be examined. Our first proposal to encourage women to enter STEM focuses on middle-school initiatives and incubator programs. The second proposal, based on commonalities females face within the workforce, is finding a better work/home life balance with the development of new maternity/paternity leave policies. Through these initiatives, we believe that the gender gap in STEM can be bridged.

ContributorsWillbrandt, Mary Madison (Co-author) / Torres, Julianna (Co-author) / Martin, Thomas (Thesis director) / Fette, Donald (Committee member) / Tech Entrepreneurship & Mgmt (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148410-Thumbnail Image.png
Description

Women’s roles in society have changed significantly throughout the years. The movement to support the rights of women has been ongoing throughout the evolution of society but has been especially prevalent in the last century. The 1960s are when women began to enter the workforce instead of being limited to

Women’s roles in society have changed significantly throughout the years. The movement to support the rights of women has been ongoing throughout the evolution of society but has been especially prevalent in the last century. The 1960s are when women began to enter the workforce instead of being limited to presuming roles as homemakers. Since that point in time, women have continued to thrive in the workforce and have pursued a larger variety of positions in various fields. Even though the opportunities for women continue to grow, there still seems to be an underrepresentation of women in science, technology, engineering, and mathematics (STEM) related fields. The underrepresentation of women pursuing physician and entrepreneurship roles in STEM will be analyzed and the challenges this group of people specifically encounter will be examined. Our first proposal to encourage women to enter STEM focuses on middle-school initiatives and incubator programs. The second proposal, based on commonalities females face within the workforce, is finding a better work/home life balance with the development of new maternity/paternity leave policies. Through these initiatives, we believe that the gender gap in STEM can be bridged.

ContributorsTorres, Julianna M (Co-author) / Willbrandt, Maddie (Co-author) / Martin, Thomas (Thesis director) / Fette, Donald (Committee member) / School of Social Transformation (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136450-Thumbnail Image.png
Description
"The Legal Adventures of Frankie and Rosie" is a creative project that explores the nontraditional format of comics to express creative nonfiction. The project is a set of 30 independent comics that focuses on two primary college-going students who are based off of the authors. The characters, Frankie and Rosie

"The Legal Adventures of Frankie and Rosie" is a creative project that explores the nontraditional format of comics to express creative nonfiction. The project is a set of 30 independent comics that focuses on two primary college-going students who are based off of the authors. The characters, Frankie and Rosie narrate their stories through dialogue. The authors use this narrative model to archive their college experience at ASU. Representing creative nonfiction through comics yields an amalgamated format that can be challenging for both the writers to produce as well as for the readers to consume. Ultimately, the project serves as an attempt to test whether or not the comic medium can stand by itself as an appropriate format to express creative nonfictional narratives without becoming a diluted combination of its purer predecessors.
Created2015-05
136912-Thumbnail Image.png
Description
Using data from the Arizona Radio Observatory Submillimeter Telescope, we have studied the active, star-forming region of the R Coronae Australis molecular cloud in 12CO (2-1), 13CO (2-1), and HCO+ (3-2). We baselined and mapped the data using CLASS. It was then used to create integrated intensity, outflow, and centroid

Using data from the Arizona Radio Observatory Submillimeter Telescope, we have studied the active, star-forming region of the R Coronae Australis molecular cloud in 12CO (2-1), 13CO (2-1), and HCO+ (3-2). We baselined and mapped the data using CLASS. It was then used to create integrated intensity, outflow, and centroid velocity maps in IDL. These clearly showed the main large outflow, and then we identified a few other possible outflows.
ContributorsBlumm, Margaret Elizabeth (Author) / Groppi, Christopher (Thesis director) / Bowman, Judd (Committee member) / Mauskopf, Philip (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2014-05
137153-Thumbnail Image.png
Description
An automated test system was developed to characterize detectors for the Kilopixel Array Pathfinder Project (KAPPa). KAPPa is an astronomy instrument that detects light at terahertz wavelengths using a 16-pixel heterodyne focal plane array. Although primarily designed for the KAPPa receiver, the test system can be used with other instruments

An automated test system was developed to characterize detectors for the Kilopixel Array Pathfinder Project (KAPPa). KAPPa is an astronomy instrument that detects light at terahertz wavelengths using a 16-pixel heterodyne focal plane array. Although primarily designed for the KAPPa receiver, the test system can be used with other instruments to automate tests that might be tedious and time-consuming by hand. Mechanical components of the test setup include an adjustable structure of aluminum t-slot framing that supports a rotating chopper. Driven by a stepper motor, the chopper alternates between blackbodies at room temperature and 77 K. The cold load consists of absorbing material submerged in liquid nitrogen in an open Styrofoam cooler. Scripts written in Matlab and Python control the mechanical system, interface with receiver components, and process data. To calculate the equivalent noise temperature of a receiver, the y-factor method is used. Test system operation was verified by sweeping the local oscillator frequency and power level for two room temperature Schottky diode receivers from Virginia Diodes, Inc. The test system was then integrated with the KAPPa receiver, providing a low cost, simple, adaptable means to measure noise with minimal user intervention.
ContributorsKuenzi, Linda Christine (Author) / Groppi, Christopher (Thesis director) / Mauskopf, Philip (Committee member) / Kulesa, Craig (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137095-Thumbnail Image.png
Description
There are three known materials that readily undergo fission, allowing their use as a base for nuclear fuel: uranium-235, a naturally-occurring but uncommon isotope; plutonium, created from irradiated natural uranium; and uranium-233, produced from thorium. Of the three, uranium-235 and plutonium feature heavily in the modern nuclear industry, while uranium-233

There are three known materials that readily undergo fission, allowing their use as a base for nuclear fuel: uranium-235, a naturally-occurring but uncommon isotope; plutonium, created from irradiated natural uranium; and uranium-233, produced from thorium. Of the three, uranium-235 and plutonium feature heavily in the modern nuclear industry, while uranium-233 and the thorium fuel cycle have failed to have significant presence in the field. Historically, nuclear energy development in the United States, and thorium development in particular, has been tied to the predominant societal outlook on the field, and thorium was only pursued seriously as an option during a period when nuclear energy was heavily favored, and resources seemed scarce. Recently, thorium-based energy has been experiencing a revival in interest in response to pollution concerns regarding fossil fuels. While public opinion is still wary of uranium, thorium-based designs could reduce reliance on fossil fuels while avoiding traditional drawbacks of nuclear energy. The thorium fuel cycle is more protected against proliferation, but is also much more expensive than the uranium-plutonium cycle in a typical reactor setup. Liquid-fueled molten salt reactor designs, however, bypass the prohibitive expense of U-233 refabrication by avoiding the stage entirely, keeping the chain reaction running with nothing but thorium input required. MSRs can use any fissile material as fuel, and are relatively safe to operate, due to passive features inherent to the design.
ContributorsGalbiati, Joseph Nicco (Author) / Martin, Thomas (Thesis director) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor)
Created2014-05