Matching Items (55)
152192-Thumbnail Image.png
Description
ABSTRACT Peptide microarrays may prove to be a powerful tool for proteomics research and clinical diagnosis applications. Fodor et al. and Maurer et al. have shown proof-of-concept methods of light- and electrochemically-directed peptide microarray fabrication on glass and semiconductor microchips respectively. In this work, peptide microarray fabrication based on the

ABSTRACT Peptide microarrays may prove to be a powerful tool for proteomics research and clinical diagnosis applications. Fodor et al. and Maurer et al. have shown proof-of-concept methods of light- and electrochemically-directed peptide microarray fabrication on glass and semiconductor microchips respectively. In this work, peptide microarray fabrication based on the abovementioned techniques were optimized. In addition, MALDI mass spectrometry based peptide synthesis characterization on semiconductor microchips was developed and novel applications of a CombiMatrix (CBMX) platform for electrochemically controlled synthesis were explored. We have investigated performance of 2-(2-nitrophenyl)propoxycarbonyl (NPPOC) derivatives as photo-labile protecting group. Specifically, influence of substituents on 4 and 5 positions of phenyl ring of NPPOC group on the rate of photolysis and the yield of the amine was investigated. The results indicated that substituents capable of forming a π-network with the nitro group enhanced the rate of photolysis and yield. Once such properly substituted NPPOC groups were used, the rate of photolysis/yield depended on the nature of protected amino group indicating that a different chemical step during the photo-cleavage process became the rate limiting step. We also focused on electrochemically-directed parallel synthesis of high-density peptide microarrays using the CBMX technology referred to above which uses electrochemically generated acids to perform patterned chemistry. Several issues related to peptide synthesis on the CBMX platform were studied and optimized, with emphasis placed on the reactions of electro-generated acids during the deprotection step of peptide synthesis. We have developed a MALDI mass spectrometry based method to determine the chemical composition of microarray synthesis, directly on the feature. This method utilizes non-diffusional chemical cleavage from the surface, thereby making the chemical characterization of high-density microarray features simple, accurate, and amenable to high-throughput. CBMX Corp. has developed a microarray reader which is based on electro-chemical detection of redox chemical species. Several parameters of the instrument were studied and optimized and novel redox applications of peptide microarrays on CBMX platform were also investigated using the instrument. These include (i) a search of metal binding catalytic peptides to reduce overpotential associated with water oxidation reaction and (ii) an immobilization of peptide microarrays using electro-polymerized polypyrrole.
ContributorsKumar, Pallav (Author) / Woodbury, Neal (Thesis advisor) / Allen, James (Committee member) / Johnston, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
156114-Thumbnail Image.png
Description
Immunosignature is a technology that retrieves information from the immune system. The technology is based on microarrays with peptides chosen from random sequence space. My thesis focuses on improving the Immunosignature platform and using Immunosignatures to improve diagnosis for diseases. I first contributed to the optimization of the immunosignature platform

Immunosignature is a technology that retrieves information from the immune system. The technology is based on microarrays with peptides chosen from random sequence space. My thesis focuses on improving the Immunosignature platform and using Immunosignatures to improve diagnosis for diseases. I first contributed to the optimization of the immunosignature platform by introducing scoring metrics to select optimal parameters, considering performance as well as practicality. Next, I primarily worked on identifying a signature shared across various pathogens that can distinguish them from the healthy population. I further retrieved consensus epitopes from the disease common signature and proposed that most pathogens could share the signature by studying the enrichment of the common signature in the pathogen proteomes. Following this, I worked on studying cancer samples from different stages and correlated the immune response with whether the epitope presented by tumor is similar to the pathogen proteome. An effective immune response is defined as an antibody titer increasing followed by decrease, suggesting elimination of the epitope. I found that an effective immune response usually correlates with epitopes that are more similar to pathogens. This suggests that the immune system might occupy a limited space and can be effective against only certain epitopes that have similarity with pathogens. I then participated in the attempt to solve the antibiotic resistance problem by developing a classification algorithm that can distinguish bacterial versus viral infection. This algorithm outperforms other currently available classification methods. Finally, I worked on the concept of deriving a single number to represent all the data on the immunosignature platform. This is in resemblance to the concept of temperature, which is an approximate measurement of whether an individual is healthy. The measure of Immune Entropy was found to work best as a single measurement to describe the immune system information derived from the immunosignature. Entropy is relatively invariant in healthy population, but shows significant differences when comparing healthy donors with patients either infected with a pathogen or have cancer.
ContributorsWang, Lu (Author) / Johnston, Stephen (Thesis advisor) / Stafford, Phillip (Committee member) / Buetow, Kenneth (Committee member) / McFadden, Grant (Committee member) / Arizona State University (Publisher)
Created2018
156926-Thumbnail Image.png
Description
Understanding changes and trends in biomedical knowledge is crucial for individuals, groups, and institutions as biomedicine improves people’s lives, supports national economies, and facilitates innovation. However, as knowledge changes what evidence illustrates knowledge changes? In the case of microbiome, a multi-dimensional concept from biomedicine, there are significant increases in publications,

Understanding changes and trends in biomedical knowledge is crucial for individuals, groups, and institutions as biomedicine improves people’s lives, supports national economies, and facilitates innovation. However, as knowledge changes what evidence illustrates knowledge changes? In the case of microbiome, a multi-dimensional concept from biomedicine, there are significant increases in publications, citations, funding, collaborations, and other explanatory variables or contextual factors. What is observed in the microbiome, or any historical evolution of a scientific field or scientific knowledge, is that these changes are related to changes in knowledge, but what is not understood is how to measure and track changes in knowledge. This investigation highlights how contextual factors from the language and social context of the microbiome are related to changes in the usage, meaning, and scientific knowledge on the microbiome. Two interconnected studies integrating qualitative and quantitative evidence examine the variation and change of the microbiome evidence are presented. First, the concepts microbiome, metagenome, and metabolome are compared to determine the boundaries of the microbiome concept in relation to other concepts where the conceptual boundaries have been cited as overlapping. A collection of publications for each concept or corpus is presented, with a focus on how to create, collect, curate, and analyze large data collections. This study concludes with suggestions on how to analyze biomedical concepts using a hybrid approach that combines results from the larger language context and individual words. Second, the results of a systematic review that describes the variation and change of microbiome research, funding, and knowledge are examined. A corpus of approximately 28,000 articles on the microbiome are characterized, and a spectrum of microbiome interpretations are suggested based on differences related to context. The collective results suggest the microbiome is a separate concept from the metagenome and metabolome, and the variation and change to the microbiome concept was influenced by contextual factors. These results provide insight into how concepts with extensive resources behave within biomedicine and suggest the microbiome is possibly representative of conceptual change or a preview of new dynamics within science that are expected in the future.
ContributorsAiello, Kenneth (Author) / Laubichler, Manfred D (Thesis advisor) / Simeone, Michael (Committee member) / Buetow, Kenneth (Committee member) / Walker, Sara I (Committee member) / Arizona State University (Publisher)
Created2018
157106-Thumbnail Image.png
Description
In most diploid cells, autosomal genes are equally expressed from the paternal and maternal alleles resulting in biallelic expression. However, as an exception, there exists a small number of genes that show a pattern of monoallelic or biased-allele expression based on the allele’s parent-of-origin. This phenomenon is termed genomic imprinting

In most diploid cells, autosomal genes are equally expressed from the paternal and maternal alleles resulting in biallelic expression. However, as an exception, there exists a small number of genes that show a pattern of monoallelic or biased-allele expression based on the allele’s parent-of-origin. This phenomenon is termed genomic imprinting and is an evolutionary paradox. The best explanation for imprinting is David Haig's kinship theory, which hypothesizes that monoallelic gene expression is largely the result of evolutionary conflict between males and females over maternal involvement in their offspring. One previous RNAseq study has investigated the presence of parent-of-origin effects, or imprinting, in the parasitic jewel wasp Nasonia vitripennis (N. vitripennis) and its sister species Nasonia giraulti (N. giraulti) to test the predictions of kinship theory in a non-eusocial species for comparison to a eusocial one. In order to continue to tease apart the connection between social and eusocial Hymenoptera, this study proposed a similar RNAseq study that attempted to reproduce these results in unique samples of reciprocal F1 Nasonia hybrids. Building a pseudo N. giraulti reference genome, differences were observed when aligning RNAseq reads to a N. vitripennis reference genome compared to aligning reads to a pseudo N. giraulti reference. As well, no evidence for parent-of-origin or imprinting patterns in adult Nasonia were found. These results demonstrated a species-of-origin effect. Importantly, the study continued to build a repository of support with the aim to elucidate the mechanisms behind imprinting in an excellent epigenetic model species, as it can also help with understanding the phenomenon of imprinting in complex human diseases.
ContributorsUnderwood, Avery Elizabeth (Author) / Wilson, Melissa (Thesis advisor) / Buetow, Kenneth (Committee member) / Gile, Gillian (Committee member) / Arizona State University (Publisher)
Created2019
136174-Thumbnail Image.png
Description
Schizophrenia affects 1.1% of the population worldwide. Schizophrenia is a complex, multifactorial disorder. Stress can trigger psychotic episodes and exacerbate schizophrenic symptoms. For humans, one gene implicated in stress and schizophrenia in humans is the early growth response 3 (EGR3). Patients with genomic variations in EGR3 have reduced levels of

Schizophrenia affects 1.1% of the population worldwide. Schizophrenia is a complex, multifactorial disorder. Stress can trigger psychotic episodes and exacerbate schizophrenic symptoms. For humans, one gene implicated in stress and schizophrenia in humans is the early growth response 3 (EGR3). Patients with genomic variations in EGR3 have reduced levels of EGR3 in the prefrontal brain region compared with healthy patients. Schizophrenic patients also have less serotonin 2A receptor (5HT2AR), which is coded by the gene Htr2a, in their prefrontal cortex. Mice that are Egr3-deficient also have decreased levels of 5HT2AR, suggesting that Egr3 may be involved in the regulation of 5HT2AR. The purpose of the experiment is to determine if EGR3 binds to the Htr2a gene promoter region by using a Chromatin immunoprecipitation (ChIP) assay. We will use ECS to increase EGR3 expression. Previously we have identified two upstream sites of interest where EGR3 potentially binds to the Htr2a gene, one which is distal and one proximal to the transcription start site. After ECS, increased binding is seen in the Htr2a distal region with EGR3 via the ChIP assay. Increased binding was not observed at either of the promoter sites; however, the t-test comparing the distal site of the ECS and the No ECS groups to have a p-value of 0.056, suggesting that increasing the number of animals (n=7) could possibly give a more accurate representation to test our hypothesis. However, the experiment still suggests increased expression and that EGR3 may bind to the distal site of Htr2a. Keywords: stress, environment, genetics, schizophrenia, EGR3, chromatin immunoprecipitation
ContributorsMishra, Abhinav (Author) / Buetow, Kenneth (Thesis director) / Gallitano, Amelia (Committee member) / Zhao, Xiuli (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor)
Created2015-05
132484-Thumbnail Image.png
Description
Hepatocellular carcinoma (HCC) is a type of liver cancer common in Sub-Saharan Africa and South East Asian countries. Each year more than 700,000 new cases and more than 600,000 deaths are recorded worldwide due to HCC. According to the American Cancer Society HCC is ranked the 5th most common cancer

Hepatocellular carcinoma (HCC) is a type of liver cancer common in Sub-Saharan Africa and South East Asian countries. Each year more than 700,000 new cases and more than 600,000 deaths are recorded worldwide due to HCC. According to the American Cancer Society HCC is ranked the 5th most common cancer worldwide with a male:female susceptibility ratio ranging between 2:1 and 8:1. HCC risk factors include lifestyle behaviors, such as persistent alcohol abuse and smoking, prolonged exposure to aflatoxins, chronic viral hepatitis infections, inherited metabolic diseases and non-alcoholic fatty liver diseases. To understand the genetic effects underlying sex-bias in HCC, it is necessary to include the sex chromosomes in genomics analyses. X and Y chromosomes are often discluded in genomics studies because of the technical and analytical challenges: sequence homology. The purpose of this thesis is to analyze the effects of sex chromosome complement aware read mapping to germline variant calling. 10 male and 10 female tumor adjacent samples from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA LIHC) cohort were processed using sex-aware and default reference and the concordance of the two approaches was examined. We detected a higher disconcordance of 0.69% on variants called on the X chromosome and a disconcordance of 0.51% on variants called on the Y chromosomes for the reference and alternative alleles respectively compared to autosomes. Variants called on the REF/ALT genotypes had a disconcordances of 1.00%, 1.05%, 1.35% and 12.34% for the autosomes, chromosome 7, the X, and the Y chromosome, respectively. At the end of the project we concluded that the generated datasets showed the effect of sex-aware read mapping on variant calling. Though the data did not show the sites that can be called as variants in one dataset but not in the other, rather the concordance looked at sites that were called as variants in both data sets.
ContributorsPhiri, Lovender Teresa (Co-author) / Phiri, Lovender (Co-author) / Wilson Sayres, Melissa (Thesis director) / Buetow, Kenneth (Committee member) / Natri, Heini (Committee member) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132823-Thumbnail Image.png
Description
Schizophrenia is a disease that affects 15.2/100,000 US citizens, with about 0.6-1.9% of the total population being afflicted with some range of severity of the disease. A lot of research has been done on the progression of the disease and its differences between males and females; however, the true underlying

Schizophrenia is a disease that affects 15.2/100,000 US citizens, with about 0.6-1.9% of the total population being afflicted with some range of severity of the disease. A lot of research has been done on the progression of the disease and its differences between males and females; however, the true underlying cause of the disease remains unknown. In the literature, however, there is a lot of indication that a genetic cause for schizophrenia is the primary origin for the disorder. In order to establish a foundation in differential gene expression and isoform expression between males and females, we utilized the Genotype-Tissue Expression Project data set (which contains samples from healthy individuals at their time of death) for the amygdala, anterior cingulate cortex, and frontal cortex. We performed quality control on the data with Trimmomatic and visualized it with FastQC and MultiQC. We then aligned to a sex-specific reference genome with Hisat2. Finally, we performed a differential expression analysis dthrough the limma/voom package with inputs from featureCounts. An isoform level analysis was run on the anterior cingulate cortex with the IsoformSwitchAnalyzeR package. We were able to identify a few differentially expressed genes in the three tissue sites, which included XIST and other highly conserved, Y-linked genes. As for the isoform level analysis, we were able to identify 13 genes with significant levels of differential isoform usage and expression, two of which have clinical relevance (DAB1 and PACRG). These findings will allow for a comparison to be made by future studies on gene expression in brain tissue samples from patients that had been diagnosed with schizophrenia in their life. By identifying any unique genes in these patients, gene therapies can be developed to target and correct any misexpression that may be occurring.
ContributorsEvanovich, Austin Phillip (Author) / Wilson, Melissa (Thesis director) / Buetow, Kenneth (Committee member) / Natri, Heini Maaret (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
137078-Thumbnail Image.png
Description
N. fowleri has been coined the "brain-eating" amoeba, receiving increased attention from both the media and scientific research since its discovery in 1961. While infection is extremely rare, it infects humans through the nasal passage after exposure to contaminated, warm freshwater, causing the brain destroying reaction primary amoebic meningoencephalitis (PAM).

N. fowleri has been coined the "brain-eating" amoeba, receiving increased attention from both the media and scientific research since its discovery in 1961. While infection is extremely rare, it infects humans through the nasal passage after exposure to contaminated, warm freshwater, causing the brain destroying reaction primary amoebic meningoencephalitis (PAM). Those infected with PAM present with symptoms such as severe headache and loss of the sense of smell and will typically die within a week thereafter. This fulminant pathogenicity has led to increased awareness of N. fowleri through the news and public health centers. This thesis aims to comprehensively review N. fowleri, the epidemiology and pathology of PAM, interventions against the disease, and how the news has portrayed N. fowleri and PAM. This thesis also strives to raise ethical and thought-provoking questions about how much media coverage and research funding N. fowleri receives given its rarity, as well as explore its value and novel contributions to understanding disease as a whole.
ContributorsFerrell, Chantell Isabell (Author) / Buetow, Kenneth (Thesis director) / Neisewander, Janet (Committee member) / McGlynn, Katherine (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137139-Thumbnail Image.png
Description
The influenza virus, also known as "the flu", is an infectious disease that has constantly affected the health of humanity. There is currently no known cure for Influenza. The Center for Innovations in Medicine at the Biodesign Institute located on campus at Arizona State University has been developing synbodies as

The influenza virus, also known as "the flu", is an infectious disease that has constantly affected the health of humanity. There is currently no known cure for Influenza. The Center for Innovations in Medicine at the Biodesign Institute located on campus at Arizona State University has been developing synbodies as a possible Influenza therapeutic. Specifically, at CIM, we have attempted to design these initial synbodies to target the entire Influenza virus and preliminary data leads us to believe that these synbodies target Nucleoprotein (NP). Given that the synbody targets NP, the penetration of cells via synbody should also occur. Then by Western Blot analysis we evaluated for the diminution of NP level in treated cells versus untreated cells. The focus of my honors thesis is to explore how synthetic antibodies can potentially inhibit replication of the Influenza (H1N1) A/Puerto Rico/8/34 strain so that a therapeutic can be developed. A high affinity synbody for Influenza can be utilized to test for inhibition of Influenza as shown by preliminary data. The 5-5-3819 synthetic antibody's internalization in live cells was visualized with Madin-Darby Kidney Cells under a Confocal Microscope. Then by Western Blot analysis we evaluated for the diminution of NP level in treated cells versus untreated cells. Expression of NP over 8 hours time was analyzed via Western Blot Analysis, which showed NP accumulation was retarded in synbody treated cells. The data obtained from my honors thesis and preliminary data provided suggest that the synthetic antibody penetrates live cells and targets NP. The results of my thesis presents valuable information that can be utilized by other researchers so that future experiments can be performed, eventually leading to the creation of a more effective therapeutic for influenza.
ContributorsHayden, Joel James (Author) / Diehnelt, Chris (Thesis director) / Johnston, Stephen (Committee member) / Legutki, Bart (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
134743-Thumbnail Image.png
Description
The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that bind the virus, no therapeutic has shown the efficacy needed for FDA approval. Here, a library of 50 peptide based

The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that bind the virus, no therapeutic has shown the efficacy needed for FDA approval. Here, a library of 50 peptide based ligands that bind the glycoprotein of the Zaire Ebola virus (GP) were developed. Using whole virus screening of vesicular stomatitis virus pseudotyped with GP, low affinity peptides were identified for ligand construction. In depth analysis showed that two of the peptide based molecules bound the Zaire GP with <100 nM KD. One of these two ligands was blocked by a known neutralizing mAb, 2G4, and showed cross-reactivity to the Sudan GP. This work presents ligands with promise for therapeutic applications across multiple variants of the Ebola virus.
ContributorsRabinowitz, Joshua Avraam (Author) / Diehnelt, Chris (Thesis director) / Johnston, Stephen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12