Matching Items (103)
Description

Take a journey to discover how you can provide quality information to your patrons for free! Explore the world of Open Access Resources! Open Access refers to scholarly information that is free, online, and free of most copyright and licensing restrictions. This makes it easier for people to find and

Take a journey to discover how you can provide quality information to your patrons for free! Explore the world of Open Access Resources! Open Access refers to scholarly information that is free, online, and free of most copyright and licensing restrictions. This makes it easier for people to find and use reliable information on a myriad of subjects, such as health information, educational materials, or business resources. Knowledge of Open Access is important for all librarians to help us best serve our communities and stretch our dwindling budgets. Your tour guides will give an overview of Open Access, discuss legislative issues, demonstrate how to find open access resources, and explain how librarians can get involved.

Presented at the SDLA/NDLA/MPLA Tri-conference 2013

ContributorsPerry, Anali Maughan (Author) / Pannabecker, Virginia (Author)
Created2013-09-26
ContributorsPerry, Anali Maughan (Performer) / ASU Library. Music Library (Publisher)
Created2000-03-24
189258-Thumbnail Image.png
Description
Predicting nonlinear dynamical systems has been a long-standing challenge in science. This field is currently witnessing a revolution with the advent of machine learning methods. Concurrently, the analysis of dynamics in various nonlinear complex systems continues to be crucial. Guided by these directions, I conduct the following studies. Predicting critical

Predicting nonlinear dynamical systems has been a long-standing challenge in science. This field is currently witnessing a revolution with the advent of machine learning methods. Concurrently, the analysis of dynamics in various nonlinear complex systems continues to be crucial. Guided by these directions, I conduct the following studies. Predicting critical transitions and transient states in nonlinear dynamics is a complex problem. I developed a solution called parameter-aware reservoir computing, which uses machine learning to track how system dynamics change with a driving parameter. I show that the transition point can be accurately predicted while trained in a sustained functioning regime before the transition. Notably, it can also predict if the system will enter a transient state, the distribution of transient lifetimes, and their average before a final collapse, which are crucial for management. I introduce a machine-learning-based digital twin for monitoring and predicting the evolution of externally driven nonlinear dynamical systems, where reservoir computing is exploited. Extensive tests on various models, encompassing optics, ecology, and climate, verify the approach’s effectiveness. The digital twins can extrapolate unknown system dynamics, continually forecast and monitor under non-stationary external driving, infer hidden variables, adapt to different driving waveforms, and extrapolate bifurcation behaviors across varying system sizes. Integrating engineered gene circuits into host cells poses a significant challenge in synthetic biology due to circuit-host interactions, such as growth feedback. I conducted systematic studies on hundreds of circuit structures exhibiting various functionalities, and identified a comprehensive categorization of growth-induced failures. I discerned three dynamical mechanisms behind these circuit failures. Moreover, my comprehensive computations reveal a scaling law between the circuit robustness and the intensity of growth feedback. A class of circuits with optimal robustness is also identified. Chimera states, a phenomenon of symmetry-breaking in oscillator networks, traditionally have transient lifetimes that grow exponentially with system size. However, my research on high-dimensional oscillators leads to the discovery of ’short-lived’ chimera states. Their lifetime increases logarithmically with system size and decreases logarithmically with random perturbations, indicating a unique fragility. To understand these states, I use a transverse stability analysis supported by simulations.
ContributorsKong, Lingwei (Author) / Lai, Ying-Cheng (Thesis advisor) / Tian, Xiaojun (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Alkhateeb, Ahmed (Committee member) / Arizona State University (Publisher)
Created2023
Description

Videos are a useful and popular way to reach an audience — we all know videos that have gone viral online, garnering millions of views. However, the type of video that can compete with Old Spice commercials takes weeks to plan and produce, as well as a significant budget. Arizona

Videos are a useful and popular way to reach an audience — we all know videos that have gone viral online, garnering millions of views. However, the type of video that can compete with Old Spice commercials takes weeks to plan and produce, as well as a significant budget. Arizona State University (ASU) Libraries wanted to find a sustainable way to share videos that would require minimal staff time to create and produce.

With that goal in mind, “The Library Minute” was born. We initially envisioned a weekly newscast, but it has evolved into a successful and fun video series. Episodes have been featured in American Libraries Direct, as part of the ACRL Marketing Minute, received more than 74,000 views on YouTube and the Internet Archive, and have garnered complimentary e-mails from all over the world. Most importantly, they are a valuable marketing and outreach tool for the ASU Libraries and have increased our visibility to our students and other departments in the university.

ContributorsPerry, Anali Maughan (Author)
Created2011-05-01
Description

Purpose: In spring of 2007, Arizona State University Libraries held a focus group of selected faculty to discover their perceptions and use of electronic books (e-books) in their research and teaching.


Methodology/approach: We employed the services of the Institute of Social Sciences Research to recruit and moderate the focus group. The

Purpose: In spring of 2007, Arizona State University Libraries held a focus group of selected faculty to discover their perceptions and use of electronic books (e-books) in their research and teaching.


Methodology/approach: We employed the services of the Institute of Social Sciences Research to recruit and moderate the focus group. The following major themes were explored:
       1) Use of e-books as textbooks.
       2) Use of e-books for personal research.
       3) Comparison between e-books and print.
       4) Disciplinary differences in perceptions of e-books.
       5) Motivators for future use

Findings: Overall, the focus group revealed that faculty had generally unsatisfactory experiences in using e-books in their research and teaching due to the unreliability of access, lack of manipulability, and the steep learning curve of the various interfaces. However, most faculty agreed that e-books would be a very viable and useful alternative if these issues were resolved.


Research limitations/implications: The focus group consisted of only six faculty members and hence is not representative of faculty as a whole. A larger survey of a more diverse faculty population would greatly serve to clarify and expand upon our findings.


Practical implications: The implications for academic libraries include providing better outreach and training to faculty about the e-book platforms offered, provide better course support, and advocate to e-book vendors to consider faculty's teaching and research needs in their product development.


Originality/value of paper: To the best knowledge of the authors, this is the first published study of faculty opinions and use of e-books utilizing focus group methodology and offers detailed information that would be useful for academic libraries and e-book vendors for evidence-based decisions.

ContributorsPerry, Anali Maughan (Author) / Carlock, Danielle (Author)
Created2008-01-29
168792-Thumbnail Image.png
Description
A notable challenge when assembling synthetic gene circuits is that modularity often fails to function as intended. A crucial underlying reason for this modularity failure is the existence of competition for shared and limited gene expression resources. By designing a synthetic cascading bistable switches (Syn-CBS) circuit in a single strain

A notable challenge when assembling synthetic gene circuits is that modularity often fails to function as intended. A crucial underlying reason for this modularity failure is the existence of competition for shared and limited gene expression resources. By designing a synthetic cascading bistable switches (Syn-CBS) circuit in a single strain with two coupled self-activation modules to achieve successive cell fate transitions, nonlinear resource competition within synthetic gene circuits is unveiled. However, in vivo it can be seen that the transition path was redirected with the activation of one switch always prevailing over that of the other, contradictory to coactivation theoretically expected. This behavior is a result of resource competition between genes and follows a ‘winner-takes-all’ rule, where the winner is determined by the relative connection strength between the two modules. Despite investigation demonstrating that resource competition between gene modules can significantly alter circuit deterministic behaviors, how resource competition contributes to gene expression noise and how this noise can be controlled is still an open issue of fundamental importance in systems biology and biological physics. By utilizing a two-gene circuit, the effects of resource competition on protein expression noise levels can be closely studied. A surprising double-edged role is discovered: the competition for these resources decreases noise while the constraint on resource availability adds its own term of noise into the system, denoted “resource competitive” noise. Noise reduction effects are then studied using orthogonal resources. Results indicate that orthogonal resources are a good strategy for eliminating the contribution of resource competition to gene expression noise. Noise propagation through a cascading circuit has been considered without resource competition. It has been noted that the noise from upstream genes can be transmitted downstream. However, resource competition’s effects on this cascading noise have yet to be studied. When studied, it is found that resource competition can induce stochastic state switching and perturb noise propagation. Orthogonal resources can remove some of the resource competitive behavior and allow for a system with less noise.
ContributorsGoetz, Hanah Elizabeth (Author) / Tian, Xiaojun (Thesis advisor) / Wang, Xiao (Committee member) / Lai, Ying-Cheng (Committee member) / Arizona State University (Publisher)
Created2022
154660-Thumbnail Image.png
Description
The research on the topology and dynamics of complex networks is one of the most focused area in complex system science. The goals are to structure our understanding of the real-world social, economical, technological, and biological systems in the aspect of networks consisting a large number of interacting units and

The research on the topology and dynamics of complex networks is one of the most focused area in complex system science. The goals are to structure our understanding of the real-world social, economical, technological, and biological systems in the aspect of networks consisting a large number of interacting units and to develop corresponding detection, prediction, and control strategies. In this highly interdisciplinary field, my research mainly concentrates on universal estimation schemes, physical controllability, as well as mechanisms behind extreme events and cascading failure for complex networked systems.

Revealing the underlying structure and dynamics of complex networked systems from observed data without of any specific prior information is of fundamental importance to science, engineering, and society. We articulate a Markov network based model, the sparse dynamical Boltzmann machine (SDBM), as a universal network structural estimator and dynamics approximator based on techniques including compressive sensing and K-means algorithm. It recovers the network structure of the original system and predicts its short-term or even long-term dynamical behavior for a large variety of representative dynamical processes on model and real-world complex networks.

One of the most challenging problems in complex dynamical systems is to control complex networks.

Upon finding that the energy required to approach a target state with reasonable precision

is often unbearably large, and the energy of controlling a set of networks with similar structural properties follows a fat-tail distribution, we identify fundamental structural ``short boards'' that play a dominant role in the enormous energy and offer a theoretical interpretation for the fat-tail distribution and simple strategies to significantly reduce the energy.

Extreme events and cascading failure, a type of collective behavior in complex networked systems, often have catastrophic consequences. Utilizing transportation and evolutionary game dynamics as prototypical

settings, we investigate the emergence of extreme events in simplex complex networks, mobile ad-hoc networks and multi-layer interdependent networks. A striking resonance-like phenomenon and the emergence of global-scale cascading breakdown are discovered. We derive analytic theories to understand the mechanism of

control at a quantitative level and articulate cost-effective control schemes to significantly suppress extreme events and the cascading process.
ContributorsChen, Yuzhong (Author) / Lai, Ying-Cheng (Thesis advisor) / Spanias, Andreas (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2016
154137-Thumbnail Image.png
Description
The purpose of information source detection problem (or called rumor source detection) is to identify the source of information diffusion in networks based on available observations like the states of the nodes and the timestamps at which nodes adopted the information (or called infected). The solution of the problem can

The purpose of information source detection problem (or called rumor source detection) is to identify the source of information diffusion in networks based on available observations like the states of the nodes and the timestamps at which nodes adopted the information (or called infected). The solution of the problem can be used to answer a wide range of important questions in epidemiology, computer network security, etc. This dissertation studies the fundamental theory and the design of efficient and robust algorithms for the information source detection problem.

For tree networks, the maximum a posterior (MAP) estimator of the information source is derived under the independent cascades (IC) model with a complete snapshot and a Short-Fat Tree (SFT) algorithm is proposed for general networks based on the MAP estimator. Furthermore, the following possibility and impossibility results are established on the Erdos-Renyi (ER) random graph: $(i)$ when the infection duration $<\frac{2}{3}t_u,$ SFT identifies the source with probability one asymptotically, where $t_u=\left\lceil\frac{\log n}{\log \mu}\right\rceil+2$ and $\mu$ is the average node degree, $(ii)$ when the infection duration $>t_u,$ the probability of identifying the source approaches zero asymptotically under any algorithm; and $(iii)$ when infection duration $
In practice, other than the nodes' states, side information like partial timestamps may also be available. Such information provides important insights of the diffusion process. To utilize the partial timestamps, the information source detection problem is formulated as a ranking problem on graphs and two ranking algorithms, cost-based ranking (CR) and tree-based ranking (TR), are proposed. Extensive experimental evaluations of synthetic data of different diffusion models and real world data demonstrate the effectiveness and robustness of CR and TR compared with existing algorithms.
ContributorsZhu, Kai (Author) / Ying, Lei (Thesis advisor) / Lai, Ying-Cheng (Committee member) / Liu, Huan (Committee member) / Shakarian, Paulo (Committee member) / Arizona State University (Publisher)
Created2015
155010-Thumbnail Image.png
Description
Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot

Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot systems, when a magnetic field is present, as the Fermi energy or the magnetic flux is varied, both regular oscillations and random fluctuations in the conductance can occur, with alternating transitions between the two. Secondly, a scheme based on geometrical rotation of rectangular devices to effectively modulate the conductance fluctuations is presented. Thirdly, when graphene is placed on a substrate of heavy metal, Rashba spin-orbit interaction of substantial strength can occur. In an open system such as a quantum dot, the interaction can induce spin polarization. Finally, a problem using graphene systems with electron-electron interactions described by the Hubbard Hamiltonian in the setting of resonant tunneling is investigated.

Another interesting problem in quantum transport is the effect of disorder or random impurities since it is inevitable in real experiments. At first, for a twodimensional Dirac ring, as the disorder density is systematically increased, the persistent current decreases slowly initially and then plateaus at a finite nonzero value, indicating remarkable robustness of the persistent currents, which cannot be discovered in normal metal and semiconductor rings. In addition, in a Floquet system with a ribbon structure, the conductance can be remarkably enhanced by onsite disorder.

Recent years have witnessed significant interest in nanoscale physical systems, such as semiconductor supperlattices and optomechanical systems, which can exhibit distinct collective dynamical behaviors. Firstly, a system of two optically coupled optomechanical cavities is considered and the phenomenon of synchronization transition associated with quantum entanglement transition is discovered. Another useful issue is nonlinear dynamics in semiconductor superlattices caused by its key potential application lies in generating radiation sources, amplifiers and detectors in the spectral range of terahertz. In such a system, transition to multistability, i.e., the emergence of multistability with chaos as a system parameter passes through a critical point, is found and argued to be abrupt.
ContributorsYing, Lei (Author) / Lai, Ying-Cheng (Thesis advisor) / Vasileska, Dragica (Committee member) / Chen, Tingyong (Committee member) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2016