Matching Items (98)
149386-Thumbnail Image.png
Description
Peptides offer great promise as targeted affinity ligands, but the space of possible peptide sequences is vast, making experimental identification of lead candidates expensive, difficult, and uncertain. Computational modeling can narrow the search by estimating the affinity and specificity of a given peptide in relation to a predetermined protein

Peptides offer great promise as targeted affinity ligands, but the space of possible peptide sequences is vast, making experimental identification of lead candidates expensive, difficult, and uncertain. Computational modeling can narrow the search by estimating the affinity and specificity of a given peptide in relation to a predetermined protein target. The predictive performance of computational models of interactions of intermediate-length peptides with proteins can be improved by taking into account the stochastic nature of the encounter and binding dynamics. A theoretical case is made for the hypothesis that, because of the flexibility of the peptide and the structural complexity of the target protein, interactions are best characterized by an ensemble of possible bound configurations rather than a single “lock and key” fit. A model incorporating these factors is proposed and evaluated. A comprehensive dataset of 3,924 peptide-protein interface structures was extracted from the Protein Data Bank (PDB) and descriptors were computed characterizing the geometry and energetics of each interface. The characteristics of these interfaces are shown to be generally consistent with the proposed model, and heuristics for design and selection of peptide ligands are derived. The curated and energy-minimized interface structure dataset and a relational database containing the detailed results of analysis and energy modeling are made publicly available via a web repository. A novel analytical technique based on the proposed theoretical model, Virtual Scanning Probe Mapping (VSPM), is implemented in software to analyze the interaction between a target protein of known structure and a peptide of specified sequence, producing a spatial map indicating the most likely peptide binding regions on the protein target. The resulting predictions are shown to be superior to those of two other published methods, and support the validity of the stochastic binding model.
ContributorsEmery, Jack Scott (Author) / Pizziconi, Vincent B (Thesis advisor) / Woodbury, Neal W (Thesis advisor) / Guilbeau, Eric J (Committee member) / Stafford, Phillip (Committee member) / Taylor, Thomas (Committee member) / Towe, Bruce C (Committee member) / Arizona State University (Publisher)
Created2010
136359-Thumbnail Image.png
Description
Bacteria with antibiotic resistance are becoming a growing concern as the number of infections they are causing continue to increase. Many potential solutions are being researched in order to combat these pathogens. One such microbe is Pseudomonas aeruginosa, which causes acute and chronic human infections. It frequently colonizes the lungs

Bacteria with antibiotic resistance are becoming a growing concern as the number of infections they are causing continue to increase. Many potential solutions are being researched in order to combat these pathogens. One such microbe is Pseudomonas aeruginosa, which causes acute and chronic human infections. It frequently colonizes the lungs of cystic fibrosis patients and is deadly. For these reasons, P. aeruginosa has been heavily studied in order to determine a solution to antibiotic resistance. One possible solution is the development of synbodies, which have been developed at the Biodesign Institute at Arizona State University. Synbodies are constructed from peptides that have antibacterial activity and were determined to have specificity for a target bacterium. These synbodies were tested in this study to determine whether or not some of them are able to inhibit P. aeruginosa growth. P. aeruginosa can also form multicellular communities called biofilms and these are known to cause approximately 65% of all human infections. After conducting minimum inhibitory assays, the efficacy of certain peptides and synbodies against biofilm inhibition was assessed. A recent study has shown that low concentrations of a specific peptide can cause biofilm disruption, where the biofilm structure breaks apart and the cells within it disperse into the supernatant. Taking into account this study and peptide data regarding biofilm inhibition from Dr. Aurélie Crabbé’s lab, screened peptides were tested against biofilm to see if dispersion would occur.
Created2015-05
132219-Thumbnail Image.png
Description
This thesis contains three chapters, all of which involve using culturally inclusive education to explore the experiences of religious undergraduate biology students. The first chapter is an essay entitled "Toward Culturally Inclusive Undergraduate Biology Education," which describes a literature review performed with the aim of characterizing the landscape of cultural

This thesis contains three chapters, all of which involve using culturally inclusive education to explore the experiences of religious undergraduate biology students. The first chapter is an essay entitled "Toward Culturally Inclusive Undergraduate Biology Education," which describes a literature review performed with the aim of characterizing the landscape of cultural competence and related terms for biology educators and biology education researchers. This chapter highlights the use of 16 different terms related to cultural competence and presents these terms, their definitions, and highlights their similarities and differences. This chapter also identifies gaps in the cultural competence literature, and presents a set of recommendations to support better culturally inclusive interventions in undergraduate science education. The second chapter, entitled "Different Evolution Acceptance Instruments Lead to Different Research Findings," describes a study in which the source of 30 years of conflicting research on the relationship between evolution acceptance and evolution understanding was determined. The results of this study showed that different instruments used to measure evolution acceptance sometimes lead to different research results and conclusions. The final chapter, entitled "Believing That Evolution is Atheistic is Associated with Poor Evolution Education Outcomes Among Religious College Students," describes a study characterizing definitions of evolution that religious undergraduate biology students may hold, and examines the impact that those definitions of evolution have on multiple outcome variables. In this study, we found that among the most religious students, those who thought evolution is atheistic were less accepting of evolution, less comfortable learning evolution, and perceived greater conflict between their personal religious beliefs and evolution than those who thought evolution is agnostic.
ContributorsDunlop, Hayley Marie (Author) / Brownell, Sara (Thesis director) / Collins, James (Committee member) / Barnes, M. Elizabeth (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131586-Thumbnail Image.png
Description
Dielectrophoresis has been shown in the recent past to successfully separate bioparticles of very subtle differences at high resolutions using biophysical forces. In this study, we test the biophysical differences of methicillin resistant and susceptible Staph. aureus that are known to have very similar genomes by using a modified gradient

Dielectrophoresis has been shown in the recent past to successfully separate bioparticles of very subtle differences at high resolutions using biophysical forces. In this study, we test the biophysical differences of methicillin resistant and susceptible Staph. aureus that are known to have very similar genomes by using a modified gradient insulator-based dielectrophoresis device (g-iDEP). MRSA is commonly seen in hospitals and is the leading killer of infectious bacteria, claiming the lives of around 10,000 people annually. G-iDEP improves many capabilities within the DEP field including sample size, cost, ease of use and analysis time. This is a promising foundation to creating a more clinically optimized diagnostic tool for both separation and detection of bacteria in the healthcare field. The capture on-set potential for fluorescently tagged MRSA (801 ± 34V) is higher than fluorescently tagged MSSA (610 ± 32V), resulting in a higher electrokinetic to dielectrophoretic mobility ratio for MRSA. Since the strains have proven to be genomically similar through sequencing, it is reasonable to attribute this significant biophysical difference to the added PBP2a enzyme in MRSA. These results are consistent with other bacterial studied within in this device and have proven to be reproducible.
ContributorsSmithers, Jared (Author) / Hayes, Mark (Thesis director) / Woodbury, Neal (Committee member) / School of Criminology and Criminal Justice (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132690-Thumbnail Image.png
Description
Diabesity is a global epidemic affecting millions worldwide. Diabesity is the term given to the link between obesity and Type II diabetes. It is estimated that ~90% of patients diagnosed with Type II diabetes are overweight or have struggled with excess body fat in the past. Type II diabetes is

Diabesity is a global epidemic affecting millions worldwide. Diabesity is the term given to the link between obesity and Type II diabetes. It is estimated that ~90% of patients diagnosed with Type II diabetes are overweight or have struggled with excess body fat in the past. Type II diabetes is characterized by insulin resistance which is an impaired response of the body to insulin that leads to high blood glucose levels. Adipose tissue, previously thought of as an inert tissue, is now recognized as a major endocrine organ with an important role in the body's immune response and the development of chronic inflammation. It is speculated that adipose tissue inflammation is a major contributor to insulin resistance particular to Type II diabetes. This literature review explores the popular therapeutic targets and marketed drugs for the treatment of Type II diabetes and their role in decreasing adipose tissue inflammation. rAGE is currently in pre-clinical studies as a possible target to combat adipose tissue inflammation due to its relation to insulin resistance. Metformin and Pioglitazone are two drugs already being marketed that use unique chemical pathways to increase the production of insulin and/or decrease blood glucose levels. Sulfonylureas is one of the first FDA approved drugs used in the treatment of Type II diabetes, however, it has been discredited due to its life-threatening side effects. Bariatric surgery is a form of invasive surgery to rid the body of excess fat and has shown to normalize blood glucose levels. These treatments are all secondary to lifestyle changes, such as diet and exercise which can help halt the progression of Type II diabetes patients.
ContributorsRobles, Alondra Maria (Author) / Woodbury, Neal (Thesis director) / Redding, Kevin (Committee member) / Allen, James (Committee member) / Hendrickson, Kirstin (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132854-Thumbnail Image.png
Description
The Heliobacterial Reaction Center (HbRC) is the simplest Type I Reaction Center (RC) known today. However, upon illumination it has been found to produce menaquinol, and this has led to experiments investigating the function of this reduction scheme. The goal of the experiment was to investigate the mechanisms of menaquinol

The Heliobacterial Reaction Center (HbRC) is the simplest Type I Reaction Center (RC) known today. However, upon illumination it has been found to produce menaquinol, and this has led to experiments investigating the function of this reduction scheme. The goal of the experiment was to investigate the mechanisms of menaquinol production through the use of Photosystem II (PSII) herbicides that are known to inhibit the QB quinone site in Type II RCs. Seven herbicides were chosen, and out of all of them terbuthylazine showed the greatest effect on the RC in isolated membranes when Transient Absorption Spectroscopy was used. In addition, terbuthylazine decreased menaquinone reduction to menaquinol by ~72%, slightly more than the reported effect of teburtryn (68%)1. In addition, terbuthylazine significantly impacted growth of whole cells under high light more than terbutryn.
ContributorsOdeh, Ahmad Osameh (Author) / Redding, Kevin (Thesis director) / Woodbury, Neal (Committee member) / Allen, James (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133704-Thumbnail Image.png
Description
In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82%

In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82% of the United States population is religiously affiliated, only 52% of scientists are religious (Pew, 2009). Even further, only 32% of biologists are religious, with 25% identifying as Christian (Pew, 2009; Ecklund, 2007). One reason as to why Christian individuals are underrepresented in biology is because faculty may express biases that affect students' ability to persist in the field of biology. In this study, we explored how revealing a Christian student's religious identity on science graduate application would impact faculty's perception of the student during the biology graduate application process. We found that faculty were significantly more likely to perceive the student who revealed their religious identity to be less competent, hirable, likeable, and faculty would be less likely to mentor the student. Our study informs upon possible reasons as to why there is an underrepresentation of Christians in science. This further suggests that bias against Christians must be addressed in order to avoid real-world, negative treatment of Christians in science.
ContributorsTruong, Jasmine Maylee (Author) / Brownell, Sara (Thesis director) / Gaughan, Monica (Committee member) / Barnes, Liz (Committee member) / School of Life Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134018-Thumbnail Image.png
Description
Approximately 248 million people in the world are currently living with chronic Hepatitis B virus (HBV) infection. HBV and HCV infections are the primary cause of liver diseases such as cirrhosis and hepatocellular carcinomas in the world with an estimated 1.4 million deaths annually. HBV in the Republic of Peru

Approximately 248 million people in the world are currently living with chronic Hepatitis B virus (HBV) infection. HBV and HCV infections are the primary cause of liver diseases such as cirrhosis and hepatocellular carcinomas in the world with an estimated 1.4 million deaths annually. HBV in the Republic of Peru was used as a case study of an emerging and rapidly spreading disease in a developing nation. Wherein, clinical diagnosis of HBV infections in at-risk communities such the Amazon Region and the Andes Mountains are challenging due to a myriad of reasons. High prices of clinical diagnosis and limited access to treatment are alone the most significant deterrent for individuals living in at-risk communities to get the much need help. Additionally, limited testing facilities, lack of adequate testing policies or national guidelines, poor laboratory capacity, resource-limited settings, geographical isolation, and public mistrust are among the chief reasons for low HBV testing. Although, preventative vaccination programs deployed by the Peruvian health officials have reduced the number of infected individuals by year and region. To significantly reduce or eradicate HBV in hyperendemic areas and countries such as Peru, preventative clinical diagnosis and vaccination programs are an absolute necessity. Consequently, the need for a portable low-priced diagnostic platform for the detection of HBV and other diseases is substantial and urgent not only in Peru but worldwide. Some of these concerns were addressed by designing a low-cost, rapid detection platform. In that, an immunosignature technology (IMST) slide used to test for reactivity against the presence of antibodies in the serum-sample was used to test for picture resolution and clarity. IMST slides were scanned using a smartphone camera placed on top of the designed device housing a circuit of 32 LED lights at 647 nm, an optical magnifier at 15X, and a linear polarizing film sheet. Tow 9V batteries powered the scanning device LED circuit ensuring enough lighting. The resulting pictures from the first prototype showed that by lighting the device at 647 nm and using a smartphone camera, the camera could capture high-resolution images. These results conclusively indicate that with any modern smartphone camera, a small box lighted to 647 nm, and optical magnifier; a powerful and expensive laboratory scanning machine can be replaced by another that is inexpensive, portable and ready to use anywhere.
ContributorsMakimaa, Heyde (Author) / Holechek, Susan (Thesis director) / Stafford, Phillip (Committee member) / Jayasuriya, Suren (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133993-Thumbnail Image.png
Description
Monoclonal antibody therapy focuses on engineering immune cells to target specific peptide sequences indicative of disease. An impediment in the continued advancement of this market is the lack of an efficient, inexpensive means of characterization that can be broadly applied to any antibody while still providing high-density data. Many characterization

Monoclonal antibody therapy focuses on engineering immune cells to target specific peptide sequences indicative of disease. An impediment in the continued advancement of this market is the lack of an efficient, inexpensive means of characterization that can be broadly applied to any antibody while still providing high-density data. Many characterization methods address an antibody's affinity for its cognate sequence but overlook other important aspects of binding behavior such as off-target binding interactions. The purpose of this study is to demonstrate how the binding intensity between an antibody and a library of random-sequence peptides, otherwise known as an immunosignature, can be evaluated to determine antibody specificity and polyreactivity. A total of 24 commercially available monoclonal antibodies were assayed on 125K and 330K peptide microarrays and analyzed using a motif clustering program to predict candidate epitopes within each antigen sequence. The results support the further development of immunosignaturing as an antibody characterization tool that is relevant to both therapeutic and non-therapeutic antibodies.
ContributorsDai, Jennifer T. (Author) / Stafford, Phillip (Thesis director) / Diehnelt, Chris (Committee member) / School of Life Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133531-Thumbnail Image.png
Description
Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally make the same predictions using only sequence information would be more efficient, both in time and resources. The purpose of

Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally make the same predictions using only sequence information would be more efficient, both in time and resources. The purpose of this study was to evaluate the effectiveness of an algorithm developed to predict regions of high-binding on proteins as it applies to determining the regions of interaction between binding partners. This approach was applied to tumor necrosis factor alpha (TNFα), its receptor TNFR2, programmed cell death protein-1 (PD-1), and one of its ligand PD-L1. The algorithms applied accurately predicted the binding region between TNFα and TNFR2 in which the interacting residues are sequential on TNFα, however failed to predict discontinuous regions of binding as accurately. The interface of PD-1 and PD-L1 contained continuous residues interacting with each other, however this region was predicted to bind weaker than the regions on the external portions of the molecules. Limitations of this approach include use of a linear search window (resulting in inability to predict discontinuous binding residues), and the use of proteins with unnaturally exposed regions, in the case of PD-1 and PD-L1 (resulting in observed interactions which would not occur normally). However, this method was overall very effective in utilizing the available information to make accurate predictions. The use of the microarray to obtain binding information and a computer algorithm to analyze is a versatile tool capable of being adapted to refine accuracy.
ContributorsBrooks, Meilia Catherine (Author) / Woodbury, Neal (Thesis director) / Diehnelt, Chris (Committee member) / Ghirlanda, Giovanna (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05