Matching Items (959)
152034-Thumbnail Image.png
Description
Alzheimer's Disease (AD) is a progressive neurodegenerative disease accounting for 50-80% of dementia cases in the country. This disease is characterized by the deposition of extracellular plaques occurring in regions of the brain important for cognitive function. A primary component of these plaques is the amyloid-beta protein. While a natively

Alzheimer's Disease (AD) is a progressive neurodegenerative disease accounting for 50-80% of dementia cases in the country. This disease is characterized by the deposition of extracellular plaques occurring in regions of the brain important for cognitive function. A primary component of these plaques is the amyloid-beta protein. While a natively unfolded protein, amyloid-beta can misfold and aggregate generating a variety of different species including numerous different soluble oligomeric species some of which are precursors to the neurofibrillary plaques. Various of the soluble amyloid-beta oligomeric species have been shown to be toxic to cells and their presence may correlate with progression of AD. Current treatment options target the dementia symptoms, but there is no effective cure or alternative to delay the progression of the disease once it occurs. Amyloid-beta aggregates show up many years before symptoms develop, so detection of various amyloid-beta aggregate species has great promise as an early biomarker for AD. Therefore reagents that can selectively identify key early oligomeric amyloid-beta species have value both as potential diagnostics for early detection of AD and as well as therapeutics that selectively target only the toxic amyloid-beta aggregate species. Earlier work in the lab includes development of several different single chain antibody fragments (scFvs) against different oligomeric amyloid-beta species. This includes isolation of C6 scFv against human AD brain derived oligomeric amyloid-beta (Kasturirangan et al., 2013). This thesis furthers research in this direction by improving the yields and investigating the specificity of modified C6 scFv as a diagnostic for AD. It is motivated by experiments reporting low yields of the C6 scFv. We also used the C6T scFv to characterize the variation in concentration of this particular oligomeric amyloid-beta species with age in a triple transgenic AD mouse model. We also show that C6T can be used to differentiate between post-mortem human AD, Parkinson's disease (PD) and healthy human brain samples. These results indicate that C6T has potential value as a diagnostic tool for early detection of AD.
ContributorsVenkataraman, Lalitha (Author) / Sierks, Michael (Thesis advisor) / Rege, Kaushal (Committee member) / Pauken, Christine (Committee member) / Arizona State University (Publisher)
Created2013
152136-Thumbnail Image.png
Description
Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving

Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving the rates of reductive dechlorination and the growth of Dehalococcoides in mixed communities. Biostimulation of contaminated sites or microcosms with electron donor fails to consistently promote dechlorination of PCE/TCE beyond cis-dichloroethene (cis-DCE), even when the presence of Dehalococcoides is confirmed. Supported by data from microcosm experiments, I showed that the stalling at cis-DCE is due a H2 competition in which components of the soil or sediment serve as electron acceptors for competing microorganisms. However, once competition was minimized by providing selective enrichment techniques, I illustrated how to obtain both fast rates and high-density Dehalococcoides using three distinct enrichment cultures. Having achieved a heightened awareness of the fierce competition for electron donor, I then identified bicarbonate (HCO3-) as a potential H2 sink for reductive dechlorination. HCO3- is the natural buffer in groundwater but also the electron acceptor for hydrogenotrophic methanogens and homoacetogens, two microbial groups commonly encountered with Dehalococcoides. By testing a range of concentrations in batch experiments, I showed that methanogens are favored at low HCO3 and homoacetogens at high HCO3-. The high HCO3- concentrations increased the H2 demand which negatively affected the rates and extent of dechlorination. By applying the gained knowledge on microbial community management, I ran the first successful continuous stirred-tank reactor (CSTR) at a 3-d hydraulic retention time for cultivation of dechlorinating cultures. I demonstrated that using carefully selected conditions in a CSTR, cultivation of Dehalococcoides at short retention times is feasible, resulting in robust cultures capable of fast dechlorination. Lastly, I provide a systematic insight into the effect of high ammonia on communities involved in dechlorination of chloroethenes. This work documents the potential use of landfill leachate as a substrate for dechlorination and an increased tolerance of Dehalococcoides to high ammonia concentrations (2 g L-1 NH4+-N) without loss of the ability to dechlorinate TCE to ethene.
ContributorsDelgado, Anca Georgiana (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Halden, Rolf U. (Committee member) / Rittmann, Bruce E. (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2013
151860-Thumbnail Image.png
Description
Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal

Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal in both men and women. Developing new drugs for the treatment of cancer is both a slow and expensive process. It is estimated that it takes an average of 15 years and an expense of $800 million to bring a single new drug to the market. However, it is also estimated that nearly 40% of that cost could be avoided by finding alternative uses for drugs that have already been approved by the Food and Drug Administration (FDA). The research presented in this document describes the testing, identification, and mechanistic evaluation of novel methods for treating many human carcinomas using drugs previously approved by the FDA. A tissue culture plate-based screening of FDA approved drugs will identify compounds that can be used in combination with the protein TRAIL to induce apoptosis selectively in cancer cells. Identified leads will next be optimized using high-throughput microfluidic devices to determine the most effective treatment conditions. Finally, a rigorous mechanistic analysis will be conducted to understand how the FDA-approved drug mitoxantrone, sensitizes cancer cells to TRAIL-mediated apoptosis.
ContributorsTaylor, David (Author) / Rege, Kaushal (Thesis advisor) / Jayaraman, Arul (Committee member) / Nielsen, David (Committee member) / Kodibagkar, Vikram (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2013
151979-Thumbnail Image.png
Description
Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the

Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the interface, new self-assembly phenomena emerge. ILs are ionic compounds that are liquid at room temperature (essentially molten salts at ambient conditions) that have remarkable properties such as negligible volatility and high chemical stability and can be optimized for nearly any application. The nature of IL-fluid interfaces has not yet been studied in depth. Consequently, the corresponding self-assembly phenomena have not yet been explored. We demonstrate how the unique molecular nature of ILs allows for new self-assembly phenomena to take place at their interfaces. These phenomena include droplet bridging (the self-assembly of both particles and emulsion droplets), spontaneous particle transport through the liquid-liquid interface, and various gelation behaviors. In droplet bridging, self-assembled monolayers of particles effectively "glue" emulsion droplets to one another, allowing the droplets to self-assembly into large networks. With particle transport, it is experimentally demonstrated the ILs overcome the strong adhesive nature of the liquid-liquid interface and extract solid particles from the bulk phase without the aid of external forces. These phenomena are quantified and corresponding mechanisms are proposed. The experimental investigations are supported by molecular dynamics (MD) simulations, which allow for a molecular view of the self-assembly process. In particular, we show that particle self-assembly depends primarily on the surface chemistry of the particles and the non-IL fluid at the interface. Free energy calculations show that the attractive forces between nanoparticles and the liquid-liquid interface are unusually long-ranged, due to capillary waves. Furthermore, IL cations can exhibit molecular ordering at the IL-oil interface, resulting in a slight residual charge at this interface. We also explore the transient IL-IL interface, revealing molecular interactions responsible for the unusually slow mixing dynamics between two ILs. This dissertation, therefore, contributes to both experimental and theoretical understanding of particle self-assembly at IL based interfaces.
ContributorsFrost, Denzil (Author) / Dai, Lenore L (Thesis advisor) / Torres, César I (Committee member) / Nielsen, David R (Committee member) / Squires, Kyle D (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2013
151380-Thumbnail Image.png
Description
Microbial mat communities that inhabit hot springs in Yellowstone National Park have been studied for their biodiversity, energetics and evolutionary history, yet little is know about how these communities cope with nutrient limitation. In the present study the changes in assimilatory gene expression levels for nitrogen (nrgA), phosphorus (phoA), and

Microbial mat communities that inhabit hot springs in Yellowstone National Park have been studied for their biodiversity, energetics and evolutionary history, yet little is know about how these communities cope with nutrient limitation. In the present study the changes in assimilatory gene expression levels for nitrogen (nrgA), phosphorus (phoA), and iron (yusV) were measured under various nutrient enrichment experiments. While results for nrgA and phoA were inconclusive, results for yusV showed an increase in expression with the addition of N and Fe. This is the first data that shows the impact of nutrients on siderophore uptake regulation in hot spring microbes.
ContributorsThorne, Michele (Author) / Elser, James J (Thesis advisor) / Touchman, Jeffrey (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2012
152583-Thumbnail Image.png
Description
The prevalence of antibiotic resistant bacterial pathogens has increased since the introduction of penicillin in the 1940s. Insufficient development of novel antibacterial agents is leaving us with a failing arsenal of therapies to combat these pathogenic organisms. We have identified a clay mineral mixture (designated CB) that exhibits in vitro

The prevalence of antibiotic resistant bacterial pathogens has increased since the introduction of penicillin in the 1940s. Insufficient development of novel antibacterial agents is leaving us with a failing arsenal of therapies to combat these pathogenic organisms. We have identified a clay mineral mixture (designated CB) that exhibits in vitro antibacterial activity against a broad spectrum of bacterial pathogens, yet the antibacterial mechanism of action remains unknown. Antibacterial susceptibility testing of four different clay samples collected from the same source revealed that these natural clays had markedly different antibacterial activity. X-ray diffraction analyses of these minerals revealed minor mineralogical differences across the samples; however, ICP analyses demonstrated that the concentrations of many elements, Fe, Co, Cu, Ni, and Zn in particular, vary greatly across the four clay mixture leachates. Supplementation of a non-antibacterial leachate containing lower concentrations of Fe, Co, Ni, Cu, and Zn to final ion concentrations and a pH equivalent to that of the antibacterial leachate resulted in antibacterial activity against E. coli and MRSA, confirming the role of these ions in the in vitro antibacterial clay mixture leachates. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to CB-L. Supplementation of CB-L with ROS scavengers eliminated oxidative damage in E. coli, but did not rescue the cells from killing, indicating that in vitro killing is due to direct metal toxicity and not to indirect oxidative damage. Finally, we ion-exchanged non-antibacterial clays with Fe, Co, Cu, and Zn and established antibacterial activity in these samples. Treatment of MRSA skin infections with both natural and ion-exchanged clays significantly decreased the bacterial load after 7 days of treatment. We conclude that 1) in vitro clay-mediated killing is due to toxicity associated directly with released metal ions and not to indirect oxidative damage and 2) that in vivo killing is due to the physical properties of the clays rather than metal ion toxicity.
ContributorsOtto, Caitin Carol (Author) / Haydel, Shelley (Thesis advisor) / Stout, Valerie (Committee member) / Roberson, Robby (Committee member) / Sandrin, Todd (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2014
152348-Thumbnail Image.png
Description
Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e.,

Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e., oral pathogen Porphyromonas gingivalis and enterobacterial Escherichia coli. P. gingivalis is a major causative agent of periodontal disease as well as systemic illnesses, like cardiovascular disease. A microarray study found that the putative PorY-PorX TCR system controls the secretion and maturation of virulence factors, as well as loci involved in the PorSS secretion system, which secretes proteinases, i.e., gingipains, responsible for periodontal disease. Proteomic analysis (SILAC) was used to improve the microarray data, reverse-transcription PCR to verify the proteomic data, and primer extension assay to determine the promoter regions of specific PorX regulated loci. I was able to characterize multiple genetic loci regulated by this TCR system, many of which play an essential role in hemagglutination and host-cell adhesion, and likely contribute to virulence in this bacterium. Enteric Gram-negative bacteria must withstand many host defenses such as digestive enzymes, low pH, and antimicrobial peptides (AMPs). The CpxR-CpxA TCR system of E. coli has been extensively characterized and shown to be required for protection against AMPs. Most recently, this TCR system has been shown to up-regulate the rfe-rff operon which encodes genes involved in the production of enterobacterial common antigen (ECA), and confers protection against a variety of AMPs. In this study, I utilized primer extension and DNase I footprinting to determine how CpxR regulates the ECA operon. My findings suggest that CpxR modulates transcription by directly binding to the rfe promoter. Multiple genetic and biochemical approaches were used to demonstrate that specific TCR systems contribute to regulation of virulence factors and resistance to host defenses in P. gingivalis and E. coli, respectively. Understanding these genetic circuits provides insight into strategies for pathogenesis and resistance to host defenses in Gram negative bacterial pathogens. Finally, these data provide compelling potential molecular targets for therapeutics to treat P. gingivalis and E. coli infections.
ContributorsLeonetti, Cori (Author) / Shi, Yixin (Thesis advisor) / Stout, Valerie (Committee member) / Nickerson, Cheryl (Committee member) / Sandrin, Todd (Committee member) / Arizona State University (Publisher)
Created2013
152641-Thumbnail Image.png
Description
The advent of new high throughput technology allows for increasingly detailed characterization of the immune system in healthy, disease, and age states. The immune system is composed of two main branches: the innate and adaptive immune system, though the border between these two states is appearing less distinct. The adaptive

The advent of new high throughput technology allows for increasingly detailed characterization of the immune system in healthy, disease, and age states. The immune system is composed of two main branches: the innate and adaptive immune system, though the border between these two states is appearing less distinct. The adaptive immune system is further split into two main categories: humoral and cellular immunity. The humoral immune response produces antibodies against specific targets, and these antibodies can be used to learn about disease and normal states. In this document, I use antibodies to characterize the immune system in two ways: 1. I determine the Antibody Status (AbStat) from the data collected from applying sera to an array of non-natural sequence peptides, and demonstrate that this AbStat measure can distinguish between disease, normal, and aged samples as well as produce a single AbStat number for each sample; 2. I search for antigens for use in a cancer vaccine, and this search results in several candidates as well as a new hypothesis. Antibodies provide us with a powerful tool for characterizing the immune system, and this natural tool combined with emerging technologies allows us to learn more about healthy and disease states.
ContributorsWhittemore, Kurt (Author) / Sykes, Kathryn (Thesis advisor) / Johnston, Stephen A. (Committee member) / Jacobs, Bertram (Committee member) / Stafford, Phillip (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2014
152814-Thumbnail Image.png
Description
Many therapeutics administered for some of the most devastating illnesses can be toxic and result in unwanted side effects. Recent developments have been made in an alternative treatment method, called gene therapy. Gene therapy has potential to rectify the genetic defects that cause a broad range of diseases. Many diseases,

Many therapeutics administered for some of the most devastating illnesses can be toxic and result in unwanted side effects. Recent developments have been made in an alternative treatment method, called gene therapy. Gene therapy has potential to rectify the genetic defects that cause a broad range of diseases. Many diseases, such as cancer, cystic fibrosis, and acquired immunodeficiency (AIDS) already have gene therapy protocols that are currently in clinical trials. Finding a non-toxic and efficient gene transfer method has been a challenge. Viral vectors are effective at transgene delivery however potential for insertion mutagenesis and activation of immune responses raises concern. For this reason, non-viral vectors have been investigated as a safer alternative to viral-mediated gene delivery. Non-viral vectors are also easy to prepare and scalable, but are limited by low transgene delivery efficacies and high cytotoxicity at effective therapeutic dosages. Thus, there is a need for a non-toxic non-viral vector with high transgene efficacies. In addition to the hurdles in finding a material for gene delivery, large-scale production of pharmaceutical grade DNA for gene therapy is needed. Current methods can be labor intensive, time consuming, and use toxic chemicals. For this reason, an efficient and safe method to collect DNA is needed. One material that is currently being explored is the hydrogel. Hydrogels are a useful subclass of biomaterials, with a wide variety of applications. This class of biomaterials can carry up to a thousand times their weight in water, and are biocompatible. At smaller dimensions, referred to as micro- and nanogels, they are very useful for many biomedical applications because of their size and ability to swell. Based on a previously synthesized hydrogel, and due to the advantages of smaller dimension in biomedical applications, we have synthesized aminoglycoside antibiotic based nanogels and microgels. Microgels and nanogels were synthesized following a ring opening polymerization of epoxide-containing crosslinkers and polyamine-containing monomers. The nanogels were screened for their cytocompatibilities and transfection efficacies, and were compared to polyethylenimine (PEI), a current standard for polymer-mediated transgene delivery. Nanogels demonstrated minimal to no toxicity to the cell line used in the study even at high concentrations. Due to the emerging need for large-scale production of DNA, microgels were evaluated for their binding capacity to plasmid DNA. Future work with the aminoglycoside antibiotic-based nanogels and microgels developed in this study will involve optimization of nanogels and microgels to facilitate in better transgene delivery and plasmid DNA binding, respectively.
ContributorsMallik, Amrita Amy (Author) / Rege, Kaushal (Thesis advisor) / Dai, Lennore (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2014
152958-Thumbnail Image.png
Description
Gold nanoparticles have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs

Gold nanoparticles have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs generated using 1,4C-1,4Bis, a cationic polymer from our laboratory demonstrated significantly higher transgene expression and exhibited lower cytotoxicities when compared to similar assemblies generated using 25 kDa poly(ethylene imine) (PEI25k-GNRs), a current standard for polymer-mediated gene delivery. Additionally, sub-toxic concentrations of 1,4C-1,4Bis-GNR nanoassemblies were employed to deliver expression vectors that express shRNA ('shRNA plasmid') against firefly luciferase gene in order to knock down expression of the protein constitutively expressed in prostate cancer cells. The roles of poly(amino ether) chemistry and zeta-potential in determining transgene expression efficacies of PAE-GNR assemblies were investigated. The theranostic potential of 1,4C-1,4Bis-GNR nanoassemblies was demonstrated using live cell two-photon induced luminescence bioimaging. The PAE class of polymers was also investigated for the one pot synthesis of both gold and silver nanoparticles using a small library poly(amino ethers) derived from linear-like polyamines. Efficient nanoparticle synthesis dependent on concentration of polymers as well as polymer chemical composition is demonstrated. Additionally, the application of poly(amino ether)-gold nanoparticles for transgene delivery is demonstrated in 22Rv1 and MB49 cancer cell lines. Base polymer, 1,4C-1,4Bis and 1,4C-1,4Bis templated and modified gold nanoparticles were compared for transgene delivery efficacies. Differences in morphology and physiochemical properties were investigated as they relate to differences in transgene delivery efficacy. There were found to be minimal differences suggestion that 1,4C-1,4Bis efficacy is not lost following use for nanoparticle modification. These results indicate that poly(amino ether)-gold nanoassemblies are a promising theranostic platform for delivery of therapeutic payloads capable of simultaneous gene silencing and bioimaging.
ContributorsRamos, James (Author) / Rege, Kaushal (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Caplan, Michael (Committee member) / Vernon, Brent (Committee member) / Garcia, Antonio (Committee member) / Arizona State University (Publisher)
Created2014