Matching Items (90)
134086-Thumbnail Image.png
Description
Prospective memory refers to the ability to form and carry out an intention. Prospective memory can be further divided into the subcategories of episodic and habitual prospective memory, which differ in their task demands and electrophysiological components. The focus of the present study is on habitual prospective memory, which is

Prospective memory refers to the ability to form and carry out an intention. Prospective memory can be further divided into the subcategories of episodic and habitual prospective memory, which differ in their task demands and electrophysiological components. The focus of the present study is on habitual prospective memory, which is the ability to routinize and consistently fulfill intentions that occur repeatedly. This skill is especially useful for populations with impaired executive functioning and/or memory deficits, such as those with acquired brain injuries. The purpose of this study is to analyze the performance of an undergraduate population on a habitual prospective memory task in order to create a baseline model for comparison with a clinical population. Evidence of habitization to the prospective memory component of the task was discovered, as demonstrated by speeded ongoing-task response times and reduced interference to prospective memory cues. Ongoing task accuracy and prospective memory cue detection were very high, while commission errors were very few, demonstrating ease of the task for neurotypical populations. We speculate that people with acquired brain injuries will not show as significant of a quickening of response times, nor such accurate performance on prospective memory cue trials or the commission error phase.
ContributorsArnett, Ciera Renee (Author) / Brewer, Gene (Thesis director) / Blais, Christopher (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
133534-Thumbnail Image.png
Description
Problem solving is a crucial skill needed to accomplish everyday tasks and overcome potential obstacles. One way to measure individual differences in problem solving ability is through performance differences on multiply-constrained problem solving tasks. Multiple cognitive processes are involved in multiply-constrained problem solving. An individual uses prospective metacognitive monitoring judgments

Problem solving is a crucial skill needed to accomplish everyday tasks and overcome potential obstacles. One way to measure individual differences in problem solving ability is through performance differences on multiply-constrained problem solving tasks. Multiple cognitive processes are involved in multiply-constrained problem solving. An individual uses prospective metacognitive monitoring judgments to gauge future allocation of resources before engaging in the necessary semantic search. Problem solvers also vary in their semantic search strategies, and use either an active analytical strategy or a passive insight strategy to arrive at asolution. Prospective metacognitive monitoring judgments and solution strategies are two aspects of the problem solving process that occur at specific points in the process while motivation influences problem solving throughout the process. The goal of this study is to examine prospective metacognitive judgments, problem solving accuracy, solution strategy, and motivation in multiply-constrained problem solving. Motivation was manipulated using a performance based monetary incentive. Participants self reported prospective Feeling-of-Knowing judgments after brief exposure to the problem, and solution strategy ratings after each problem. No significant differences were found to support the effect of motivation on problem solving accuracy, prospective metacognitive judgments, relative accuracy, or solution strategies. Significant differences were found between groups when comparing the number of problems skipped, indicating that participants were sensitive to the incentive structure. The findings suggest that motivation may not be an overarching mediator in multiply-constrained problem solving or problem solving may require a specific type of incentive structure to increase accuracy. However, little is known in the research literature about the type of incentive structure needed to consistently increase individual motivation.
ContributorsCohen, Aaron Sayre (Author) / Brewer, Gene (Thesis director) / Ellis, Derek (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Temporal discounting refers to our tendency to discount the value of future rewards. At the extreme, temporal discounting can give rise to detrimental myopic decision-making. Most studies examining the neural basis of temporal discounting in people have been performed using functional Magnetic Resonance Imaging (fMRI). However, fMRI has relatively poor

Temporal discounting refers to our tendency to discount the value of future rewards. At the extreme, temporal discounting can give rise to detrimental myopic decision-making. Most studies examining the neural basis of temporal discounting in people have been performed using functional Magnetic Resonance Imaging (fMRI). However, fMRI has relatively poor temporal resolution compared with the speed at which people make choices, so understanding choice dynamics using fMRI is difficult. We address the issue utilizing electroencephalography (EEG) to study cortical processes related to temporal discounting. The fMRI literature has found that a network of fronto-parietal brain regions plays an important role during the decision-making process. We aim to explore activity in these regions during the decision process and determine how cortical activity relates to choice parameters. Based on prior fMRI studies, we hypothesized that dorsomedial prefrontal cortex (dmPFC) may act as a regulator of dorsal lateral prefrontal cortex (dlPFC) and there will be an increase in dlPFC activity for more difficult decisions. We also hypothesized that neural activity may be directly related to the temporal discount rate we estimate behaviorally. We utilized regression analysis to determine the relationship. The results found supported our hypotheses. This study may open the door to a better understanding of the dynamic of brain regions while performing a temporal discounting task.
Created2017-05
134911-Thumbnail Image.png
Description
Working memory is the cognitive system responsible for storing and maintaining information in short-term memory and retrieving cues from long-term memory. Working memory capacity (WMC) is needed for goal maintenance and to ignore task-irrelevant stimuli (Engle & Kane, 2003). Emotions are one type of task-irrelevant stimuli that could distract an

Working memory is the cognitive system responsible for storing and maintaining information in short-term memory and retrieving cues from long-term memory. Working memory capacity (WMC) is needed for goal maintenance and to ignore task-irrelevant stimuli (Engle & Kane, 2003). Emotions are one type of task-irrelevant stimuli that could distract an individual from a task (Smallwood, Fitzgerald, Miles, & Phillips, 2009). There are studies that show there is a relation between emotions and working memory capacity. The direction of this relationship, though, is unclear (Kensinger, 2009). In this study, emotions served as a distractor and task performance was examined for differences in the effect of emotion depending on participants' working memory capacity. The participants watched a mood induction video, then were told to complete a complex-span working memory task. The mood induction was successful- participants watching the negative emotional video were in a less positive mood after watching the video than the participants that watched a neutral video. However, the results of the complex-span working memory task showed no significant difference in the results between participants in the negative versus neutral mood. These results may provide support to an alternative hypothesis: cognitive tasks can diminish the effects of emotions (Dillen, Heslenfeld, & Koole, 2009).
ContributorsAhmed, Sania (Author) / Brewer, Gene (Thesis director) / Wingert, Kimberly (Committee member) / Blais, Chris (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134970-Thumbnail Image.png
Description
Working memory is the cognitive system responsible for storing and maintaining information in short-term memory and retrieving cues from long-term memory. Working memory capacity (WMC) is needed for goal maintenance and to ignore task-irrelevant stimuli (Engle & Kane, 2003). Emotions are one type of task-irrelevant stimuli that could distract an

Working memory is the cognitive system responsible for storing and maintaining information in short-term memory and retrieving cues from long-term memory. Working memory capacity (WMC) is needed for goal maintenance and to ignore task-irrelevant stimuli (Engle & Kane, 2003). Emotions are one type of task-irrelevant stimuli that could distract an individual from a task (Smallwood, Fitzgerald, Miles, & Phillips, 2009). There are studies that show there is a relation between emotions and working memory capacity. The direction of this relationship, though, is unclear (Kensinger, 2009). In this study, emotions served as a distractor and task performance was examined for differences in the effect of emotion depending on participants' working memory capacity. The participants watched a mood induction video, then were told to complete a complex-span working memory task. The mood induction was successful- participants watching the negative emotional video were in a less positive mood after watching the video than the participants that watched a neutral video. However, the results of the complex-span working memory task showed no significant difference in the results between participants in the negative versus neutral mood. These results may provide support to an alternative hypothesis: cognitive tasks can diminish the effects of emotions (Dillen, Heslenfeld, & Koole, 2009).
ContributorsAhmed, Sania (Author) / Brewer, Gene (Thesis director) / Wingert, Kimberly (Committee member) / Blais, Chris (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
135319-Thumbnail Image.png
Description
Trust was measured for a target profile that varied the target's religion and costly signaling behavior. Subjects were primed with a threat, romance, or neutral response previous to viewing the profile to determine if this had any effect on their trust ratings of the target. Participants were drawn from MTurk

Trust was measured for a target profile that varied the target's religion and costly signaling behavior. Subjects were primed with a threat, romance, or neutral response previous to viewing the profile to determine if this had any effect on their trust ratings of the target. Participants were drawn from MTurk with ages ranging from 18 to 75 (M= 33.2) and various religious backgrounds (including 210 Christians, 190 atheists/agnostics, and 92 other religious believers). Participants were presented with the threat, romance, or neutral vignette, shown the target profile, and asked to rate the target's trustworthiness. There was no main effect of the vignette condition (p = .088) or costly signaling (p = .099) on the target's trustworthiness. There was a main effect of target religion (p = .006) wherein the Muslim target was trusted more than the Catholic target. These findings do not replicate previous findings on religion, costly signaling, and trust.
ContributorsBesaw, Courtney Michelle (Author) / Cohen, Adam (Thesis director) / Brewer, Gene (Committee member) / School of Human Evolution and Social Change (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134052-Thumbnail Image.png
Description
It is a well-established finding in memory research that spacing or distributing information, as opposed to blocking all the information together, results in an enhanced memory of the learned material. Recently, researchers have decided to investigate if this spacing effect is also beneficial in category learning. In a set of

It is a well-established finding in memory research that spacing or distributing information, as opposed to blocking all the information together, results in an enhanced memory of the learned material. Recently, researchers have decided to investigate if this spacing effect is also beneficial in category learning. In a set of experiments, Carvalho & Goldstone (2013), demonstrated that a blocked presentation showed an advantage during learning, but that ultimately, the distributed presentation yielded better performance during a post-learning transfer test. However, we have identified a major methodological issue in this study that we believe contaminates the results in a way that leads to an inflation and misrepresentation of learning levels. The present study aimed to correct this issue and re-examine whether a blocked or distributed presentation enhances the learning and subsequent generalization of categories. We also introduced two shaping variables, category size and distortion level at transfer, in addition to the mode of presentation (blocked versus distributed). Results showed no significant differences of mode of presentation at either the learning or transfer phases, thus supporting our concern about the previous study. Additional findings showed benefits in learning categories with a greater category size, as well as higher classification accuracy of novel stimuli at lower-distortion levels.
ContributorsJacoby, Victoria Leigh (Author) / Homa, Donald (Thesis director) / Brewer, Gene (Committee member) / Davis, Mary (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
171788-Thumbnail Image.png
Description
The ability to preferentially encode and later retrieve valuable information amidst a plethora of miscellaneous information is an essential aspect of human memory. Several hypotheses have been suggested to explain the enhanced ability to successfully encode high value items. These include the hypothesis that the prefrontal executive control processes are

The ability to preferentially encode and later retrieve valuable information amidst a plethora of miscellaneous information is an essential aspect of human memory. Several hypotheses have been suggested to explain the enhanced ability to successfully encode high value items. These include the hypothesis that the prefrontal executive control processes are engaged for valuable information, producing elaborative rehearsal strategy. Another hypothesis is that greater attentional resources are allocated to higher value items via the reward driven mid-brain dopamine systems interacting with hippocampal and cortical areas to produce enhanced memory. To further understand the neural mechanisms of value on memory, electroencephalogram data under a value-directed remembering paradigm (VDR) was analyzed for oscillatory activity. During the task, participants encoded words assigned a different point value with the instruction to maximize the point value of recognized words during test. To analyze frequency activity during encoding, conditions of subsequent memory as subjective responses of either recollection (i.e., “remember”) and familiarity (i.e., “know”) were assessed. A possible way to observe the allocation of attention resources in the brain are alpha oscillations (8-15 Hz) which are thought to underlie this process. Participants demonstrated superior memory for high versus low value point items. Following the hypothesis that there is a greater recruitment of attentional resources for high value information, alpha oscillatory power in the occipital/temporal cortex displayed significantly more desynchronization for high value compared to low value conditions during encoding. As well, successful retrieval compared with unsuccessful retrieval and subsequent “remember” or “know” conditions resulted in a qualitatively different, more sustained desynchronization of alpha and other unanticipated frequency band oscillations during encoding that are discussed. Taken together, these findings support previous research for alpha-band desynchronization during encoding items of value into memory and potentially open paths to decouple value and memory driven processes.
ContributorsWilliams, Cole (Author) / Brewer, Gene (Thesis advisor) / McClure, Samuel (Committee member) / Blais, Chris (Committee member) / Arizona State University (Publisher)
Created2022
171608-Thumbnail Image.png
Description
Recent findings in human interactions with complex objects, objects with unpredictable interaction dynamics, revealed predictability as an important factor when determining effective control strategies. The current study extended these findings by examining the role of predictability in the selection of control strategies in two scenarios: during initial interactions with a

Recent findings in human interactions with complex objects, objects with unpredictable interaction dynamics, revealed predictability as an important factor when determining effective control strategies. The current study extended these findings by examining the role of predictability in the selection of control strategies in two scenarios: during initial interactions with a novel, complex object, and when intentional constraints are imposed. In Experiment 1, methods with which people can identify and improve their control strategy during initial interactions with a complex object were examined. Participants actively restricted their movements at first to simplify the object’s complex behavior, then gradually adjusted movements to improve the system’s predictability. In Experiment 2, predictability of participants’ control strategies was monitored when the intention to act was changed to prioritize speed over stability. Even when incentivized to seek alternative strategies, people still prioritized predictability, and would compensate for the loss of predictability. These experiments furthered understanding of the motor control processes as a whole and may reveal important implications when generalized to other domains that also interact with complex systems.
ContributorsNguyen, Tri Duc (Author) / Amazeen, Eric (Thesis advisor) / Glenberg, Arthur (Committee member) / Amazeen, Polemnia G (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2022
190704-Thumbnail Image.png
Description
The current study explores the extent to which literacy game performance can be used to assess reading comprehension skill and vocabulary knowledge. Standardized reading assessments have the benefit of years of validation across different age groups and reading comprehension levels, allowing teachers to evaluate students’ reading performance and relate it

The current study explores the extent to which literacy game performance can be used to assess reading comprehension skill and vocabulary knowledge. Standardized reading assessments have the benefit of years of validation across different age groups and reading comprehension levels, allowing teachers to evaluate students’ reading performance and relate it to a national standard. However, these assessments reduce classroom time for learning activities, which may be more authentic indicators of student progress. Students’ reading skills can be measured during learning activities by using game-based stealth assessment of literacy. Game-based assessment may be more enjoyable and less likely to invoke test anxiety than traditional assessments, but enjoyment may also impact the validity of the assessment. The current study recruited participants (n=405) to play five literacy games: CON-Artist, Paraphrase Quest, Fix It, Map Conquest, and Vocab Flash. Students also completed the Gates-MacGinitie Reading Test (GMRT), which serves as a validated measure of reading comprehension skill and vocabulary knowledge. Students answered enjoyment questions after each game and the GMRT, and they completed the Cognitive Test Anxiety questionnaire, which measures trait-level negative thoughts about test-taking. The results indicate that Vocab Flash predicted 31% of variance in reading comprehension and 21% of variance in vocabulary knowledge. The other games were not predictive beyond Vocab Flash, but each of them was weakly correlated with reading comprehension skill and vocabulary knowledge. Three games were more enjoyable than GMRT Reading Comprehension, but no games were more enjoyable than GMRT Vocabulary. Cognitive Test Anxiety was negatively correlated with the GMRT and Vocab Flash, but not with the other games. Game enjoyment moderated the relationship between game performance and reading skill, albeit in differing directions. Paraphrase Quest was less predictive of reading comprehension for students who enjoyed the game, and Vocab Flash was more predictive of reading comprehension for those who enjoyed the game. The findings of this study suggest that a simple vocabulary game can be used to measure reading comprehension skill and vocabulary knowledge. Future research is needed to better understand how game-based assessments can be designed to minimize the effects of test anxiety and enjoyment on performance.
ContributorsChristhilf, Katerina (Author) / McNamara, Danielle S (Thesis advisor) / Roscoe, Rod (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2023