Matching Items (45)
150735-Thumbnail Image.png
Description
I present the results of studies from two historically separate fields of research: heat related illness and human thermal comfort adaptation. My research objectives were: (a) to analyze the relationships between climate and heat related morbidity in Phoenix, Arizona and Chicago, Illinois; (b) explore possible linkages of human thermal comfort

I present the results of studies from two historically separate fields of research: heat related illness and human thermal comfort adaptation. My research objectives were: (a) to analyze the relationships between climate and heat related morbidity in Phoenix, Arizona and Chicago, Illinois; (b) explore possible linkages of human thermal comfort adaptation to heat-related illness; and (c) show possible benefits of collaboration between the two fields of research. Previous climate and mortality studies discovered regional patterns in summertime mortality in North America: lower in hot, southern cities compared to more temperate cities. I examined heat related emergency (911) dispatches from these two geographically and climatically different cities. I analyzed with local weather conditions with 911 dispatches identified by responders as "heat" related from 2001 to 2006 in Phoenix and 2003 through 2006 in Chicago. Both cities experienced a rapid rise in heat-related dispatches with increasing temperature and heat index, but at higher thresholds in Phoenix. Overall, Phoenix had almost two and half times more heat-related dispatches than Chicago. However, Phoenix did not experience the large spikes of heat-related dispatches that occurred in Chicago. These findings suggest a resilience to heat-related illness that may be linked to acclimatization in Phoenix. I also present results from a survey based outdoor human thermal comfort field study in Phoenix to assess levels of local acclimatization. Previous research in outdoor human thermal comfort in hot humid and temperate climates used similar survey-based methodologies and found higher levels of thermal comfort (adaptation to heat) that in warmer climates than in cooler climates. The study presented in this dissertation found outdoor thermal comfort thresholds and heat tolerance levels in Phoenix were higher than previous studies from temperate climates more similar to Chicago. These differences were then compared to the differences in weather conditions associated with heat-related dispatches. The higher comfort thresholds in Phoenix were similar in scale to the climate differences associated with the upsurge in heat-related dispatches in Phoenix and Chicago. This suggests a link between heat related illness and acclimatization, and illustrates potential for collaboration in research between the two fields.
ContributorsHartz, Donna (Author) / Brazel, Anthony J. (Thesis advisor) / Heisler, Gordon (Committee member) / Cerveny, Randal (Committee member) / Arizona State University (Publisher)
Created2012
150690-Thumbnail Image.png
Description
Isentropic analysis is a type of analysis that is based on using the concept of potential temperatures, the adiabatically established temperature at 1000 hPa. In the 1930s and 1940s this type of analysis proved to be valuable in indicating areas of increased moisture content and locations experiencing flow up or

Isentropic analysis is a type of analysis that is based on using the concept of potential temperatures, the adiabatically established temperature at 1000 hPa. In the 1930s and 1940s this type of analysis proved to be valuable in indicating areas of increased moisture content and locations experiencing flow up or down adiabatic surfaces. However, in the early 1950s, this type of analysis faded out of use and not until the twenty-first century have some researchers started once again to examine the usefulness of isentropic analysis. One aspect in which isentropic analysis could be practical, based on prior research, is in severe weather situations, due to its ability to easily show adiabatic motion and moisture. As a result, I analyzed monthly climatological isentropic surfaces to identify distinct patterns associated with tornado occurrences for specific regions and months across the contiguous United States. I collected tornado reports from 1974 through 2009 to create tornado regions for each month across the contiguous United States and corresponding upper air data for the same time period. I then separated these upper air data into tornado and non-tornado days for specific regions and conducted synoptic and statistical analyses to establish differences between the two. Finally, I compared those results with analyses of individual case studies for each defined region using independent data from 2009 through 2010. On tornado days distinct patterns can be identified on the isentropic surface: (1) the average isentropic surface lowered on tornado days indicating a trough across the region, (2) a corresponding increase in moisture content occurred across the tornado region, and (3) wind shifted in such a manner to produce flow up the isentropic trough indicating uplift. When comparing the climatological results with the case studies, the isentropic pattern for the case studies in general was more pronounced compared to the climatological pattern; however, this would be expected as when creating the average the pattern/conditions will be smoothed. These findings begin to bridge the large gap in literature, show the usefulness of isentropic analysis in monthly and daily use and serve as catalysts to create a finer resolution database in isentropic coordinates.
ContributorsPace, Matthew Brandon (Author) / Cerveny, Randall S. (Thesis advisor) / Selover, Nancy J (Committee member) / Brazel, Anthony J. (Committee member) / Arizona State University (Publisher)
Created2012
150960-Thumbnail Image.png
Description
Accurate characterization of forest canopy cover from satellite imagery hinges on the development of a model that considers the level of detail achieved by field methods. With the improved precision of both optical sensors and various spatial techniques, models built to extract forest structure attributes have become increasingly robust, yet

Accurate characterization of forest canopy cover from satellite imagery hinges on the development of a model that considers the level of detail achieved by field methods. With the improved precision of both optical sensors and various spatial techniques, models built to extract forest structure attributes have become increasingly robust, yet many still fail to address some of the most important characteristics of a forest stand's intricate make-up. The objective of this study, therefore, was to address canopy cover from the ground, up. To assess canopy cover in the field, a vertical densitometer was used to acquire a total of 2,160 percent-cover readings from 30 randomly located triangular plots within a 6.94 km2 study area in the central highlands of the Bradshaw Ranger District, Prescott National Forest, Arizona. Categorized by species with the largest overall percentage of cover observations (Pinus ponderosa, Populus tremuloides, and Quercus gambelii), three datasets were created to assess the predictability of coniferous, deciduous, and mixed (coniferous and deciduous) canopies. Landsat-TM 5 imagery was processed using six spectral enhancement algorithms (PCA, TCT, NDVI, EVI, RVI, SAVI) and three local windows (3x3, 5x5, 7x7) to extract and assess the various ways in which these data were expressed in the imagery, and from those expressions, develop a model that predicted percent-cover for the entire study area. Generally, modeled cover estimates exceeded actual cover, over predicting percent-cover by a margin of 9-13%. Models predicted percent-cover more accurately when treated with a 3x3 local window than those treated with 5x5 and 7x7 local windows. In addition, the performance of models defined by the principal components of three vegetation indices (NDVI, EVI, RVI) were superior to those defined by the principal components of all four (NDVI, EVI, RVI, SAVI), as well as the principal and tasseled cap components of all multispectral bands (bands 123457). Models designed to predict mixed and coniferous percent-cover were more accurate than deciduous models.
ContributorsSchirmang, Tracy Lynn (Author) / Myint, Soe W (Thesis advisor) / Fall, Patricia L. (Thesis advisor) / Brazel, Anthony J. (Committee member) / Arizona State University (Publisher)
Created2012
135745-Thumbnail Image.png
Description
As urban areas continue to grow with an increasing amount of population growth and influx, prudent planning for developed and developing cities has never been as important as it is today. Currently, about 54% of the world's population lives in urban areas while that number is expected to increase to

As urban areas continue to grow with an increasing amount of population growth and influx, prudent planning for developed and developing cities has never been as important as it is today. Currently, about 54% of the world's population lives in urban areas while that number is expected to increase to 66% by 2050 (United Nations 2014). This being said, planners, politicians, and policymakers among others need to be able to anticipate the ideal urban infrastructure needed with the most effective layout and design for creating and maintaining a high quality of life. The purpose of this research is to identify a potential link between neighborhood-scale urban form criteria that are believed to improve quality of life and the perceived quality of life of people who live in neighborhoods that display these specific urban form criteria. This study looked at three neighborhoods that each exhibited differences in neighborhood urban form such as: community-oriented design, high walkability, and close proximity to nature. A non-scientific preliminary survey was conducted in each of these three neighborhoods to identify potential differences in urban form preference targeting different demographics. The scope of this study is a preliminary assessment to gain an idea of which neighborhood-scale urban form factors, if any, are important for improving quality of life from the point of view of the resident. These results may lead to future study that could determine the relationship between availability of infrastructure and residential preference for certain infrastructure. This could also lead to a guide for planners on important criteria to consider for future neighborhood development in an urban setting as well as areas to focus on in the urban retrofitting process.
ContributorsZipperer, Michael James (Author) / Pijawka, David (Thesis director) / Talen, Emily (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
141381-Thumbnail Image.png
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric).

After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2013-12-01
141389-Thumbnail Image.png
Description

Human exposure to excessively warm weather, especially in cities, is an increasingly important public health problem. This study examined heat-related health inequalities within one city in order to understand the relationships between the microclimates of urban neighborhoods, population characteristics, thermal environments that regulate microclimates, and the resources people possess to

Human exposure to excessively warm weather, especially in cities, is an increasingly important public health problem. This study examined heat-related health inequalities within one city in order to understand the relationships between the microclimates of urban neighborhoods, population characteristics, thermal environments that regulate microclimates, and the resources people possess to cope with climatic conditions. A simulation model was used to estimate an outdoor human thermal comfort index (HTCI) as a function of local climate variables collected in 8 diverse city neighborhoods during the summer of 2003 in Phoenix, USA. HTCI is an indicator of heat stress, a condition that can cause illness and death. There were statistically significant differences in temperatures and HTCI between the neighborhoods during the entire summer, which increased during a heat wave period. Lower socioeconomic and ethnic minority groups were more likely to live in warmer neighborhoods with greater exposure to heat stress. High settlement density, sparse vegetation, and having no open space in the neighborhood were significantly correlated with higher temperatures and HTCI. People in warmer neighborhoods were more vulnerable to heat exposure because they had fewer social and material resources to cope with extreme heat. Urban heat island reduction policies should specifically target vulnerable residential areas and take into account equitable distribution and preservation of environmental resources.

ContributorsHarlan, Sharon L. (Author) / Brazel, Anthony J. (Author) / Prashad, Lela (Author) / Stefanov, William L. (Author) / Larsen, Larissa (Author)
Created2006-09-25
141392-Thumbnail Image.png
Description

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate

Problem: The prospect that urban heat island (UHI) effects and climate change may increase urban temperatures is a problem for cities that actively promote urban redevelopment and higher densities. One possible UHI mitigation strategy is to plant more trees and other irrigated vegetation to prevent daytime heat storage and facilitate nighttime cooling, but this requires water resources that are limited in a desert city like Phoenix.

Purpose: We investigated the tradeoffs between water use and nighttime cooling inherent in urban form and land use choices.

Methods: We used a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) model to examine the variation in temperature and evaporation in 10 census tracts in Phoenix's urban core. After validating results with estimates of outdoor water use based on tract-level city water records and satellite imagery, we used the model to simulate the temperature and water use consequences of implementing three different scenarios.

Results and conclusions: We found that increasing irrigated landscaping lowers nighttime temperatures, but this relationship is not linear; the greatest reductions occur in the least vegetated neighborhoods. A ratio of the change in water use to temperature impact reached a threshold beyond which increased outdoor water use did little to ameliorate UHI effects.

Takeaway for practice: There is no one design and landscape plan capable of addressing increasing UHI and climate effects everywhere. Any one strategy will have inconsistent results if applied across all urban landscape features and may lead to an inefficient allocation of scarce water resources.

Research Support: This work was supported by the National Science Foundation (NSF) under Grant SES-0345945 (Decision Center for a Desert City) and by the City of Phoenix Water Services Department. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

ContributorsGober, Patricia (Author) / Brazel, Anthony J. (Author) / Quay, Ray (Author) / Myint, Soe (Author) / Grossman-Clarke, Susanne (Author) / Miller, Adam (Author) / Rossi, Steve (Author)
Created2010-01-04
141393-Thumbnail Image.png
Description

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling

This study addresses a classic sustainability challenge—the tradeoff between water conservation and temperature amelioration in rapidly growing cities, using Phoenix, Arizona and Portland, Oregon as case studies. An urban energy balance model— LUMPS (Local-Scale Urban Meteorological Parameterization Scheme)—is used to represent the tradeoff between outdoor water use and nighttime cooling during hot, dry summer months. Tradeoffs were characterized under three scenarios of land use change and three climate-change assumptions. Decreasing vegetation density reduced outdoor water use but sacrificed nighttime cooling. Increasing vegetated surfaces accelerated nighttime cooling, but increased outdoor water use by ~20%. Replacing impervious surfaces with buildings achieved similar improvements in nighttime cooling with minimal increases in outdoor water use; it was the most water-efficient cooling strategy. The fact that nighttime cooling rates and outdoor water use were more sensitive to land use scenarios than climate-change simulations suggested that cities can adapt to a warmer climate by manipulating land use.

ContributorsGober, Patricia (Author) / Middel, Ariane (Author) / Brazel, Anthony J. (Author) / Myint, Soe (Author) / Chang, Heejun (Author) / Duh, Jiunn-Der (Author) / House-Peters, Lily (Author)
Created2013-05-16
141395-Thumbnail Image.png
Description

Because of a projected surge of several billion urban inhabitants by mid-century, a rising urgency exists to advance local and strategically deployed measures intended to ameliorate negative consequences on urban climate (e.g., heat stress, poor air quality, energy/water availability). Here we highlight the importance of incorporating scale-dependent built environment induced

Because of a projected surge of several billion urban inhabitants by mid-century, a rising urgency exists to advance local and strategically deployed measures intended to ameliorate negative consequences on urban climate (e.g., heat stress, poor air quality, energy/water availability). Here we highlight the importance of incorporating scale-dependent built environment induced solutions within the broader umbrella of urban sustainability outcomes, thereby accounting for fundamental physical principles. Contemporary and future design of settlements demands cooperative participation between planners, architects, and relevant stakeholders, with the urban and global climate community, which recognizes the complexity of the physical systems involved and is ideally fit to quantitatively examine the viability of proposed solutions. Such participatory efforts can aid the development of locally sensible approaches by integrating across the socioeconomic and climatic continuum, therefore providing opportunities facilitating comprehensive solutions that maximize benefits and limit unintended consequences.

ContributorsGeorgescu, Matei (Author) / Chow, Winston, 1951- (Author) / Brazel, Anthony J. (Author) / Trapido-Lurie, B (Author) / Roth, M (Author) / Benson-Lira, V (Author)
Created2015-06-09
141397-Thumbnail Image.png
Description

We conducted microclimate simulations in ENVI-Met 3.1 to evaluate the impact of vegetation in lowering temperatures during an extreme heat event in an urban core neighborhood park in Phoenix, Arizona. We predicted air and surface temperatures under two different vegetation regimes: existing conditions representative of Phoenix urban core neighborhoods, and

We conducted microclimate simulations in ENVI-Met 3.1 to evaluate the impact of vegetation in lowering temperatures during an extreme heat event in an urban core neighborhood park in Phoenix, Arizona. We predicted air and surface temperatures under two different vegetation regimes: existing conditions representative of Phoenix urban core neighborhoods, and a proposed scenario informed by principles of landscape design and architecture and Urban Heat Island mitigation strategies. We found significant potential air and surface temperature reductions between representative and proposed vegetation scenarios:

1. A Park Cool Island effect that extended to non-vegetated surfaces.
2. A net cooling of air underneath or around canopied vegetation ranging from 0.9 °C to 1.9 °C during the warmest time of the day.
3. Potential reductions in surface temperatures from 0.8 °C to 8.4 °C in areas underneath or around vegetation.

ContributorsDeclet-Barreto, Juan (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Chow, Winston, 1951- (Author) / Harlan, Sharon L. (Author)
Created2012-12-21