Matching Items (3,345)
Filtering by

Clear all filters

152849-Thumbnail Image.png
Description
New OpenFlow switches support a wide range of network applications, such as firewalls, load balancers, routers, and traffic monitoring. While ternary content addressable memory (TCAM) allows switches to process packets at high speed based on multiple header fields, today's commodity switches support just thousands to tens of thousands of forwarding

New OpenFlow switches support a wide range of network applications, such as firewalls, load balancers, routers, and traffic monitoring. While ternary content addressable memory (TCAM) allows switches to process packets at high speed based on multiple header fields, today's commodity switches support just thousands to tens of thousands of forwarding rules. To allow for finer-grained policies on this hardware, efficient ways to support the abstraction of a switch are needed with arbitrarily large rule tables. To do so, a hardware-software hybrid switch is designed that relies on rule caching to provide large rule tables at low cost. Unlike traditional caching solutions, neither individual rules are cached (to respect rule dependencies) nor compressed (to preserve the per-rule traffic counts). Instead long dependency chains are ``spliced'' to cache smaller groups of rules while preserving the semantics of the network policy. The proposed hybrid switch design satisfies three criteria: (1) responsiveness, to allow rapid changes to the cache with minimal effect on traffic throughput; (2) transparency, to faithfully support native OpenFlow semantics; (3) correctness, to cache rules while preserving the semantics of the original policy. The evaluation of the hybrid switch on large rule tables suggest that it can effectively expose the benefits of both hardware and software switches to the controller and to applications running on top of it.
ContributorsAlipourfard, Omid (Author) / Syrotiuk, Violet R. (Thesis advisor) / Richa, Andréa W. (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2014
151063-Thumbnail Image.png
Description
Interference constitutes a major challenge for communication networks operating over a shared medium where availability is imperative. This dissertation studies the problem of designing and analyzing efficient medium access protocols which are robust against strong adversarial jamming. More specifically, four medium access (MAC) protocols (i.e., JADE, ANTIJAM, COMAC, and SINRMAC)

Interference constitutes a major challenge for communication networks operating over a shared medium where availability is imperative. This dissertation studies the problem of designing and analyzing efficient medium access protocols which are robust against strong adversarial jamming. More specifically, four medium access (MAC) protocols (i.e., JADE, ANTIJAM, COMAC, and SINRMAC) which aim to achieve high throughput despite jamming activities under a variety of network and adversary models are presented. We also propose a self-stabilizing leader election protocol, SELECT, that can effectively elect a leader in the network with the existence of a strong adversary. Our protocols can not only deal with internal interference without the exact knowledge on the number of participants in the network, but they are also robust to unintentional or intentional external interference, e.g., due to co-existing networks or jammers. We model the external interference by a powerful adaptive and/or reactive adversary which can jam a (1 − ε)-portion of the time steps, where 0 < ε ≤ 1 is an arbitrary constant. We allow the adversary to be adaptive and to have complete knowledge of the entire protocol history. Moreover, in case the adversary is also reactive, it uses carrier sensing to make informed decisions to disrupt communications. Among the proposed protocols, JADE, ANTIJAM and COMAC are able to achieve Θ(1)-competitive throughput with the presence of the strong adversary; while SINRMAC is the first attempt to apply SINR model (i.e., Signal to Interference plus Noise Ratio), in robust medium access protocols design; the derived principles are also useful to build applications on top of the MAC layer, and we present SELECT, which is an exemplary study for leader election, which is one of the most fundamental tasks in distributed computing.
ContributorsZhang, Jin (Author) / Richa, Andréa W. (Thesis advisor) / Scheideler, Christian (Committee member) / Sen, Arunabha (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2012
154160-Thumbnail Image.png
Description
Exhaustive testing is generally infeasible except in the smallest of systems. Research

has shown that testing the interactions among fewer (up to 6) components is generally

sufficient while retaining the capability to detect up to 99% of defects. This leads to a

substantial decrease in the number of tests. Covering arrays are combinatorial

Exhaustive testing is generally infeasible except in the smallest of systems. Research

has shown that testing the interactions among fewer (up to 6) components is generally

sufficient while retaining the capability to detect up to 99% of defects. This leads to a

substantial decrease in the number of tests. Covering arrays are combinatorial objects

that guarantee that every interaction is tested at least once.

In the absence of direct constructions, forming small covering arrays is generally

an expensive computational task. Algorithms to generate covering arrays have been

extensively studied yet no single algorithm provides the smallest solution. More

recently research has been directed towards a new technique called post-optimization.

These algorithms take an existing covering array and attempt to reduce its size.

This thesis presents a new idea for post-optimization by representing covering

arrays as graphs. Some properties of these graphs are established and the results are

contrasted with existing post-optimization algorithms. The idea is then generalized to

close variants of covering arrays with surprising results which in some cases reduce

the size by 30%. Applications of the method to generation and test prioritization are

studied and some interesting results are reported.
ContributorsKaria, Rushang Vinod (Author) / Colbourn, Charles J (Thesis advisor) / Syrotiuk, Violet (Committee member) / Richa, Andréa W. (Committee member) / Arizona State University (Publisher)
Created2015
156648-Thumbnail Image.png
Description
Many applications require efficient data routing and dissemination in Delay Tolerant Networks (DTNs) in order to maximize the throughput of data in the network, such as providing healthcare to remote communities, and spreading related information in Mobile Social Networks (MSNs). In this thesis, the feasibility of using boats in the

Many applications require efficient data routing and dissemination in Delay Tolerant Networks (DTNs) in order to maximize the throughput of data in the network, such as providing healthcare to remote communities, and spreading related information in Mobile Social Networks (MSNs). In this thesis, the feasibility of using boats in the Amazon Delta Riverine region as data mule nodes is investigated and a robust data routing algorithm based on a fountain code approach is designed to ensure fast and timely data delivery considering unpredictable boat delays, break-downs, and high transmission failures. Then, the scenario of providing healthcare in Amazon Delta Region is extended to a general All-or-Nothing (Splittable) Multicommodity Flow (ANF) problem and a polynomial time constant approximation algorithm is designed for the maximum throughput routing problem based on a randomized rounding scheme with applications to DTNs. In an MSN, message content is closely related to users’ preferences, and can be used to significantly impact the performance of data dissemination. An interest- and content-based algorithm is developed where the contents of the messages, along with the network structural information are taken into consideration when making message relay decisions in order to maximize data throughput in an MSN. Extensive experiments show the effectiveness of the above proposed data dissemination algorithm by comparing it with state-of-the-art techniques.
ContributorsLiu, Mengxue (Author) / Richa, Andréa W. (Thesis advisor) / Johnson, Thienne (Committee member) / Syrotiuk, Violet R. (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2018