Matching Items (94)
149711-Thumbnail Image.png
Description
An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an

An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an obliquely rifted plate margin, gravity surveys were conducted across the normal-fault-bounded basins within the gulf-margin array and, along with optically stimulated luminescence dating of offset surfaces, fault-slip rates were estimated and fault patterns across basins were assessed, providing insight into sedimentary basin evolution. Additionally, detailed geologic and geomorphic maps were constructed along two faults within the system, leading to a more complete understanding of the role of individual normal faults within a larger array. These faults slip at a low rate (0.1-1 mm/yr) and have relatively shallow hanging wall basins (~500-3000 m). Overall, the gulf-margin faults accommodate protracted, distributed deformation at a low rate and provide a minor contribution to overall rifting. Integrating figures with text can lead to greater science learning than when either medium is presented alone. Textbooks, composed of text and graphics, are a primary source of content in most geology classes. It is essential to understand how students approach learning from text and figures in textbook-style learning materials and how the arrangement of the text and figures influences their learning approach. Introductory geology students were eye tracked while learning from textbook-style materials composed of text and graphics. Eye fixation data showed that students spent less time examining the figure than the text, but the students who more frequently examined the figure tended to improve more from the pretest to the posttest. In general, students tended to examine the figure at natural breaks in the reading. Textbook-style materials should, therefore, be formatted to include a number of natural breaks so that learners can pause to inspect the figure without the risk of losing their place in the reading and to provide a chance to process the material in small chunks. Multimedia instructional materials should be designed to support the cognitive processes of the learner.
ContributorsBusch, Melanie M. D (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen (Thesis advisor) / Chi, Michelene (Committee member) / Semken, Steven (Committee member) / Tyburczy, James (Committee member) / Arizona State University (Publisher)
Created2011
150024-Thumbnail Image.png
Description
Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are

Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are essential for interpreting Martian mineralogy and geologic history. However, previous studies have shown that chemical weathering and the precipitation of fine-grained secondary silicates can adversely affect the accuracy of TIR spectral models. Furthermore, spectral libraries used to identify minerals on the Martian surface lack some important weathering products, including poorly-crystalline aluminosilicates like allophane, thus eliminating their identification in TIR spectral models. It is essential to accurately interpret TIR spectral data from chemically weathered surfaces to understand the evolution of aqueous processes on Mars. Laboratory experiments were performed to improve interpretations of TIR data from weathered surfaces. To test the accuracy of deriving chemistry of weathered rocks from TIR spectroscopy, chemistry was derived from TIR models of weathered basalts from Baynton, Australia and compared to actual weathering rind chemistry. To determine how specific secondary silicates affect the TIR spectroscopy of weathered basalts, mixtures of basaltic minerals and small amounts of secondary silicates were modeled. Poorly-crystalline aluminosilicates were synthesized and their TIR spectra were added to spectral libraries. Regional Thermal Emission Spectrometer (TES) data were modeled using libraries containing these poorly-crystalline aluminosilicates to test for their presence on the Mars. Chemistry derived from models of weathered Baynton basalts is not accurate, but broad chemical weathering trends can be interpreted from the data. TIR models of mineral mixtures show that small amounts of crystalline and amorphous silicate weathering products (2.5-5 wt.%) can be detected in TIR models and can adversely affect modeled plagioclase abundances. Poorly-crystalline aluminosilicates are identified in Northern Acidalia, Solis Planum, and Meridiani. Previous studies have suggested that acid sulfate weathering was the dominant surface alteration process for the past 3.5 billion years; however, the identification of allophane indicates that alteration at near-neutral pH occurred on regional scales and that acid sulfate weathering is not the only weathering process on Mars.
ContributorsRampe, Elizabeth Barger (Author) / Sharp, Thomas G (Thesis advisor) / Christensen, Phillip (Committee member) / Hervig, Richard (Committee member) / Shock, Everett (Committee member) / Williams, Lynda (Committee member) / Arizona State University (Publisher)
Created2011
149677-Thumbnail Image.png
Description
Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in

Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in biomedicine are relatively unexplored but have great potential scientific interest due to their essential nature in metabolism. Iron, a crucial element in biology, fractionates during biochemically relevant reactions. To test the extent of this fractionation in an important reaction process, equilibrium iron isotope fractionation during organic ligand exchange was determined. The results show that iron fractionates during organic ligand exchange, and that isotope enrichment increases as a function of the difference in binding constants between ligands. Additionally, to create a mass balance model for iron in a whole organism, iron isotope compositions in a whole mouse and in individual mouse organs were measured. The results indicate that fractionation occurs during transfer between individual organs, and that the whole organism was isotopically light compared with food. These two experiments advance our ability to interpret stable iron isotopes in biomedicine. Previous research demonstrated that calcium isotope variations in urine can be used as an indicator of changes in net bone mineral balance. In order to measure calcium isotopes by MC-ICP-MS, a chemical purification method was developed to quantitatively separate calcium from other elements in a biological matrix. Subsequently, this method was used to evaluate if calcium isotopes respond when organisms are subjected to conditions known to induce bone loss: 1) Rhesus monkeys were given an estrogen-suppressing drug; 2) Human patients underwent extended bed rest. In both studies, there were rapid, detectable changes in calcium isotope compositions from baseline - verifying that calcium isotopes can be used to rapidly detect changes in bone mineral balance. By characterizing iron isotope fractionation in biologically relevant processes and by demonstrating that calcium isotopes vary rapidly in response to bone loss, this thesis represents an important step in utilizing these isotope systems as a diagnostic and mechanistic tool to study the metabolism of these elements in vivo.
ContributorsMorgan, Jennifer Lynn Louden (Author) / Anbar, Ariel D. (Thesis advisor) / Wasylenki, Laura E. (Committee member) / Jones, Anne K. (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2011
148027-Thumbnail Image.png
Description

Papago Park in Tempe, Arizona (USA) is host to several buttes composed of landslide breccias. The focus of this thesis is a butte called “Contact Hill,” which is composed of metarhyolitic debris flows, granitic debris flows, and Barnes Butte Breccia. The Barnes Butte Breccia can be broken down into several

Papago Park in Tempe, Arizona (USA) is host to several buttes composed of landslide breccias. The focus of this thesis is a butte called “Contact Hill,” which is composed of metarhyolitic debris flows, granitic debris flows, and Barnes Butte Breccia. The Barnes Butte Breccia can be broken down into several different compositional categories that can be dated based on their relative ages. The depositional timeline of these rocks is explored through their mineral and physical properties. The rhyolitic debris flow is massively bedded and dips at 26° to the southeast. The granitic debris flow is not bedded and exhibits a mixture of granite clasts of different grain sizes. In thin section analysis, five mineral types were identified: opaque inclusions, white quartz, anhedral and subhedral biotite, yellow stained K-feldspar, and gray plagioclase. It is hypothesized that regional stretching and compression of the crust, accompanied with magmatism, helped bring the metarhyolite and granite to the surface. Domino-like fault blocks caused large brecciation, and collapse of a nearby quartzite and granite mountain helped create the Barnes Butte Breccia: a combination of quartzite, metarhyolite, and granite clasts. Evidence of Papago Park’s ancient terrestrial history is seen in metarhyolite clasts containing sand grains. These geologic events, in addition to erosion, are responsible for Papago Park’s unique appearance today.

ContributorsScheller, Jessica Rose (Author) / Reynolds, Stephen (Thesis director) / Johnson, Julia (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148089-Thumbnail Image.png
Description

In this study, the influence of fluid mixing on temperature and geochemistry of hot spring fluids is investigated. Yellowstone National Park (YNP) is home to a diverse range of hot springs with varying temperature and chemistry. The mixing zone of interest in this paper, located in Geyser Creek, YNP, has

In this study, the influence of fluid mixing on temperature and geochemistry of hot spring fluids is investigated. Yellowstone National Park (YNP) is home to a diverse range of hot springs with varying temperature and chemistry. The mixing zone of interest in this paper, located in Geyser Creek, YNP, has been a point of interest since at least the 1960’s (Raymahashay, 1968). Two springs, one basic (~pH 7) and one acidic (~pH 3) mix together down an outflow channel. There are visual bands of different photosynthetic pigments which suggests the creation of temperature and chemical gradients due to the fluids mixing. In this study, to determine if fluid mixing is driving these changes of temperature and chemistry in the system, a model that factors in evaporation and cooling was developed and compared to measured temperature and chemical data collected downstream. Comparison of the modeled temperature and chemistry to the measured values at the downstream mixture shows that many of the ions, such as Cl⁻, F⁻, and Li⁺, behave conservatively with respect to mixing. This indicates that the influence of mixing accounts for a large proportion of variation in the chemical composition of the system. However, there are some chemical constituents like CH₄, H₂, and NO₃⁻, that were not conserved, and the concentrations were either depleted or increased in the downstream mixture. Some of these constituents are known to be used by microorganisms. The development of this mixing model can be used as a tool for predicting biological activity as well as building the framework for future geochemical and computational models that can be used to understand the energy availability and the microbial communities that are present.

ContributorsOrrill, Brianna Isabel (Author) / Shock, Everett (Thesis director) / Howells, Alta (Committee member) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149926-Thumbnail Image.png
Description
A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes

A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes of remote identification. Protein patterns were generated using high performance liquid chromatography (HPLC). Patterns created could identify high-traffic and low-traffic indoor spaces. Samples were collected from the air using air pumps to draw air through a filter paper trapping particulates, including large amounts of shed protein matter. In complimentary research aerosolized biological samples were collected from various ecosystems throughout Ecuador to explore the relationship between environmental setting and aerosolized protein concentrations. In order to further enhance protein separation and produce more detailed patterns for the identification of individual organisms of interest; a novel separation device was constructed and characterized. The separation device incorporates a longitudinal gradient as well as insulating dielectrophoretic features within a single channel. This design allows for the production of stronger local field gradients along a global gradient allowing particles to enter, initially transported through the channel by electrophoresis and electroosmosis, and to be isolated according to their characteristic physical properties, including charge, polarizability, deformability, surface charge mobility, dielectric features, and local capacitance. Thus, different types of particles are simultaneously separated at different points along the channel distance given small variations of properties. The device has shown the ability to separate analytes over a large dynamic range of size, from 20 nm to 1 μm, roughly the size of proteins to the size of cells. In the study of different sized sulfate capped polystyrene particles were shown to be selectively captured as well as concentrating particles from 103 to 106 times. Qualitative capture and manipulation of β-amyloid fibrils were also shown. The results demonstrate the selective focusing ability of the technique; and it may form the foundation for a versatile tool for separating complex mixtures. Combined this work shows promise for future identification of individual organisms from aerosolized protein as well as for applications in biomedical research.
ContributorsStaton, Sarah J. R (Author) / Hayes, Mark A. (Committee member) / Anbar, Ariel D (Committee member) / Shock, Everett (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2011
150254-Thumbnail Image.png
Description
Conceptual change has been a large part of science education research for several decades due to the fact that it allows teachers to think about what students' preconceptions are and how to change these to the correct scientific conceptions. To have students change their preconceptions teachers need to allow students

Conceptual change has been a large part of science education research for several decades due to the fact that it allows teachers to think about what students' preconceptions are and how to change these to the correct scientific conceptions. To have students change their preconceptions teachers need to allow students to confront what they think they know in the presence of the phenomena. Students then collect and analyze evidence pertaining to the phenomena. The goal in the end is for students to reorganize their concepts and change or correct their preconceptions, so that they hold more accurate scientific conceptions. The purpose of this study was to investigate how students' conceptions of the Earth's surface, specifically weathering and erosion, change using the conceptual change framework to guide the instructional decisions. The subjects of the study were a class of 25 seventh grade students. This class received a three-week unit on weathering and erosion that was structured using the conceptual change framework set by Posner, Strike, Hewson, and Gertzog (1982). This framework starts by looking at students' misconceptions, then uses scientific data that students collect to confront their misconceptions. The changes in students' conceptions were measured by a pre concept sketch and post concept sketch. The results of this study showed that the conceptual change framework can modify students' preconceptions of weathering and erosion to correct scientific conceptions. There was statistical significant difference between students' pre concept sketches and post concept sketches scores. After examining the concept sketches, differences were found in how students' concepts had changed from pre to post concept sketch. Further research needs to be done with conceptual change and the geosciences to see if conceptual change is an effective method to use to teach students about the geosciences.
ContributorsTillman, Ashley (Author) / Luft, Julie (Thesis advisor) / Middleton, James (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
150188-Thumbnail Image.png
Description
Meter-resolution topography gathered by LiDAR (Light Detection and Ranging) has become an indispensable tool for better understanding of many surface processes including those sculpting landscapes that record information about earthquake hazards for example. For this reason, and because of the spectacular representation of the phenomena that these data provide, it

Meter-resolution topography gathered by LiDAR (Light Detection and Ranging) has become an indispensable tool for better understanding of many surface processes including those sculpting landscapes that record information about earthquake hazards for example. For this reason, and because of the spectacular representation of the phenomena that these data provide, it is appropriate to integrate these data into Earth science educational materials. I seek to answer the following research question: "will using the LiDAR topography data instead of, or alongside, traditional visualizations and teaching methods enhance a student's ability to understand geologic concepts such as plate tectonics, the earthquake cycle, strike-slip faults, and geomorphology?" In order to answer this question, a ten-minute introductory video on LiDAR and its uses for the study of earthquakes entitled "LiDAR: Illuminating Earthquake Hazards" was produced. Additionally, LiDAR topography was integrated into the development of an undergraduate-level educational activity, the San Andreas fault (SAF) earthquake cycle activity, designed to teach introductory Earth science students about the earthquake cycle. Both the LiDAR video and the SAF activity were tested in undergraduate classrooms in order to determine their effectiveness. A pretest and posttest were administered to introductory geology lab students. The results of these tests show a notable increase in understanding LiDAR topography and its uses for studying earthquakes from pretest to posttest after watching the video on LiDAR, and a notable increase in understanding the earthquake cycle from pretest to posttest using the San Andreas Fault earthquake cycle exercise. These results suggest that the use of LiDAR topography within these educational tools is beneficial for students when learning about the earthquake cycle and earthquake hazards.
ContributorsRobinson, Sarah Elizabeth (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen J. (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
149091-Thumbnail Image.png
Description

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance of this interdisciplinary scientific field while reconciling its ties to imperial and colonizing extractive systems which have led to harmful and invasive endeavors. This intersection among geosciences, (environmental) justice studies, and decolonization is intended to promote inclusive pedagogical models through just and equitable methodologies and frameworks as to prevent further injustices and promote recognition and healing of old wounds. By utilizing decolonial frameworks and highlighting the voices of peoples from colonized and exploited landscapes, this annotated syllabus tackles the issues previously described while proposing solutions involving place-based education and the recentering of land within geoscience pedagogical models. (abstract)

ContributorsReed, Cameron E (Author) / Richter, Jennifer (Thesis director) / Semken, Steven (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
150115-Thumbnail Image.png
Description
The spectacular geological panoramas of Grand Canyon National Park (GCNP) motivate the curiosity of visitors about geology. However, there is little research on how well these visitors understand the basic geologic principles on display in the Canyon walls. The new Trail of Time (ToT) interpretative exhibit along the South Rim

The spectacular geological panoramas of Grand Canyon National Park (GCNP) motivate the curiosity of visitors about geology. However, there is little research on how well these visitors understand the basic geologic principles on display in the Canyon walls. The new Trail of Time (ToT) interpretative exhibit along the South Rim uses Grand Canyon vistas to teach these principles. Now being visited by thousands daily, the ToT is a uniquely valuable setting for research on informal learning of geologic time and other basic geologic concepts. At the ToT, visitors are not only asked to comprehend a linear timeline, but to associate it with the strata exposed in the walls of the Canyon. The research addressed two primary questions: (1) how do visitors of the National Park use elements of the geologic landscape of the Grand Canyon to explain fundamental principles of relative geologic time? and (2) how do visitors reconcile the relationship between the horizontal ToT timeline and the vertical encoding of time in the strata exposed in the Canyon walls? Semi-structured interviews tracked participants' understanding of the ToT exhibit and of basic principles of geologic time. Administering the verbal analysis method of Chi (1997) to the interview transcripts, the researcher identified emergent themes related to how the respondents utilized the landscape to answer interview questions. Results indicate that a majority of respondents are able to understand principles of relative geologic time by utilizing both the observed and inferred landscape of Grand Canyon. Results also show that by applying the same integrated approach to the landscape, a majority of respondents are able to reconcile stratigraphic time with the horizontal ToT timeline. To gain deeper insight into the cognitive skills activated to correctly understand geologic principles the researcher used Dodick and Orion's application of Montangero's (1996) diachronic thinking model to code responses into three schemes: (1) transformation, (2) temporal organization, and (3) interstage linkage. Results show that correct responses required activation of the temporal organization scheme or the more advanced interstage linkage scheme. Appropriate application of these results can help inform the development of future outdoor interpretive geoscience exhibits.
ContributorsFrus, Rebecca (Author) / Semken, Steven (Thesis advisor) / Baker, Dale (Committee member) / Farmer, Jack (Committee member) / Arizona State University (Publisher)
Created2011