Matching Items (136)
Description
Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA

Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and downstream manipulation, but microfabricating the required sub-micrometer filtration structure is an elaborate process. This thesis presents a simple method to fabricate polydimethylsiloxane (PDMS) devices with an integrated membrane filter that will sample, lyse, and extract the DNA from microorganisms in aqueous environments. An off-the-shelf membrane filter disc was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. After accumulating sufficient biomass on the filter, a sequential electrochemical lysing process was performed by applying 5VDC across the filter. This device was further evaluated by delivering several samples of differing concentrations of cyanobacterium Synechocystis then quantifying the DNA using real-time PCR. Lastly, an environmental sample was run through the device and the amount of photosynthetic microorganisms present in the water was determined. The major breakthroughs in this design are low energy demand, cheap materials, simple design, straightforward fabrication, and robust performance, together enabling wide-utility of similar chip-based devices for field-deployable operations in environmental micro-biotechnology.
ContributorsLecluse, Aurelie (Author) / Meldrum, Deirdre (Thesis advisor) / Chao, Joseph (Thesis advisor) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2011
150401-Thumbnail Image.png
Description
The North American Monsoon System (NAMS) contributes ~55% of the annual rainfall in the Chihuahuan Desert during the summer months. Relatively frequent, intense storms during the NAMS increase soil moisture, reduce surface temperature and lead to runoff in ephemeral channels. Quantifying these processes, however, is difficult due to the sparse

The North American Monsoon System (NAMS) contributes ~55% of the annual rainfall in the Chihuahuan Desert during the summer months. Relatively frequent, intense storms during the NAMS increase soil moisture, reduce surface temperature and lead to runoff in ephemeral channels. Quantifying these processes, however, is difficult due to the sparse nature of coordinated observations. In this study, I present results from a field network of rain gauges (n = 5), soil probes (n = 48), channel flumes (n = 4), and meteorological equipment in a small desert shrubland watershed (~0.05 km2) in the Jornada Experimental. Using this high-resolution network, I characterize the temporal and spatial variability of rainfall, soil conditions and channel runoff within the watershed from June 2010 to September 2011, covering two NAMS periods. In addition, CO2, water and energy measurements at an eddy covariance tower quantify seasonal, monthly and event-scale changes in land-atmosphere states and fluxes. Results from this study indicate a strong seasonality in water and energy fluxes, with a reduction in Bowen ratio (B, the ratio of sensible to latent heat fluxes) from winter (B = 14) to summer (B = 3.3). This reduction is tied to shallow soil moisture availability during the summer (s = 0.040 m3/m3) as compared to the winter (s = 0.004 m3/m3). During the NAMS, I analyzed four consecutive rainfall-runoff events to quantify the soil moisture and channel flow responses and how water availability impacted the land-atmosphere fluxes. Spatial hydrologic variations during events occur over distances as short as ~15 m. The field network also allowed comparisons of several approaches to estimate evapotranspiration (ET). I found a more accurate ET estimate (a reduction of mean absolute error by 38%) when using distributed soil moisture data, as compared to a standard water balance approach based on the tower site. In addition, use of spatially-varied soil moisture data yielded a more reasonable relationship between ET and soil moisture, an important parameterization in many hydrologic models. The analyses illustrates the value of high-resolution sampling for quantifying seasonal fluxes in desert shrublands and their improvements in closing the water balance in small watersheds.
ContributorsTempleton, Ryan (Author) / Vivoni, Enrique R (Thesis advisor) / Mays, Larry (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2011
148174-Thumbnail Image.png
Description

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those that are easily implementable in developing areas. One simple treatment

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those that are easily implementable in developing areas. One simple treatment that has gained popularity is biochar—a porous, carbon-based substance produced through pyrolysis of biomass in an oxygen-free environment. Arizona State University’s Engineering Projects in Community Service (EPICS) has partnered with communities in Nepal in an attempt to increase biochar production in the area, as it has several valuable applications including water treatment. Biochar’s arsenic adsorption capability will be investigated in this project with the goal of using the biochar that Nepalese communities produce to remove water contaminants. It has been found in scientific literature that biochar is effective in removing heavy metal contaminants from water with the addition of iron through surface activation. Thus, the specific goal of this research was to compare the arsenic adsorption disparity between raw biochar and iron-impregnated biochar. It was hypothesized that after numerous bed volumes pass through a water treatment column, iron from the source water will accumulate on the surface of raw biochar, mimicking the intentionally iron-impregnated biochar and further increasing contaminant uptake. It is thus an additional goal of this project to compare biochar loaded with iron through an iron-spiked water column and biochar impregnated with iron through surface oxidation. For this investigation, the biochar was crushed and sieved to a size between 90 and 100 micrometers. Two samples were prepared: raw biochar and oxidized biochar. The oxidized biochar was impregnated with iron through surface oxidation with potassium permanganate and iron loading. Then, X-ray fluorescence was used to compare the composition of the oxidized biochar with its raw counterpart, indicating approximately 0.5% iron in the raw and 1% iron in the oxidized biochar. The biochar samples were then added to batches of arsenic-spiked water at iron to arsenic concentration ratios of 20 mg/L:1 mg/L and 50 mg/L:1 mg/L to determine adsorption efficiency. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated an 86% removal of arsenic using a 50:1 ratio of iron to arsenic (1.25 g biochar required in 40 mL solution), and 75% removal with a 20:1 ratio (0.5 g biochar required in 40 mL solution). Additional samples were then inserted into a column process apparatus for further adsorption analysis. Again, ICP-MS analysis was performed and the results showed that while both raw and treated biochars were capable of adsorbing arsenic, they were exhausted after less than 70 bed volumes (234 mL), with raw biochar lasting 60 bed volumes (201 mL) and oxidized about 70 bed volumes (234 mL). Further research should be conducted to investigate more affordable and less laboratory-intensive processes to prepare biochar for water treatment.

ContributorsLaird, Ashlyn (Author) / Schoepf, Jared (Thesis director) / Westerhoff, Paul (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149817-Thumbnail Image.png
Description
Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers,

Atmospheric particulate matter has a substantial impact on global climate due to its ability to absorb/scatter solar radiation and act as cloud condensation nuclei (CCN). Yet, little is known about marine aerosol, in particular, the carbonaceous fraction. In the present work, particulate matter was collected, using High Volume (HiVol) samplers, onto quartz fiber substrates during a series of research cruises on the Atlantic Ocean. Samples were collected on board the R/V Endeavor on West–East (March–April, 2006) and East–West (June–July, 2006) transects in the North Atlantic, as well as on the R/V Polarstern during a North–South (October–November, 2005) transect along the western coast of Europe and Africa. The aerosol total carbon (TC) concentrations for the West–East (Narragansett, RI, USA to Nice, France) and East–West (Heraklion, Crete, Greece to Narragansett, RI, USA) transects were generally low over the open ocean (0.36±0.14 μg C/m3) and increased as the ship approached coastal areas (2.18±1.37 μg C/m3), due to increased terrestrial/anthropogenic aerosol inputs. The TC for the North–South transect samples decreased in the southern hemisphere with the exception of samples collected near the 15th parallel where calculations indicate the air mass back trajectories originated from the continent. Seasonal variation in organic carbon (OC) was seen in the northern hemisphere open ocean samples with average values of 0.45 μg/m3 and 0.26 μg/m3 for spring and summer, respectively. These low summer time values are consistent with SeaWiFS satellite images that show decreasing chlorophyll a concentration (a proxy for phytoplankton biomass) in the summer. There is also a statistically significant (p<0.05) decline in surface water fluorescence in the summer. Moreover, examination of water–soluble organic carbon (WSOC) shows that the summer aerosol samples appear to have a higher fraction of the lower molecular weight material, indicating that the samples may be more oxidized (aged). The seasonal variation in aerosol content seen during the two 2006 cruises is evidence that a primary biological marine source is a significant contributor to the carbonaceous particulate in the marine atmosphere and is consistent with previous studies of clean marine air masses.
ContributorsHill, Hansina Rae (Author) / Herckes, Pierre (Thesis advisor) / Westerhoff, Paul (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2011
150177-Thumbnail Image.png
Description
Local municipalities in the Phoenix Metropolitan Area have voiced an interest in purchasing alternate source water with lower DBP precursors. Along the primary source is a hydroelectric dam in which water will be diverted from. This project is an assessment of optimizing the potential blends of source water to a

Local municipalities in the Phoenix Metropolitan Area have voiced an interest in purchasing alternate source water with lower DBP precursors. Along the primary source is a hydroelectric dam in which water will be diverted from. This project is an assessment of optimizing the potential blends of source water to a water treatment plant in an effort to enable them to more readily meet DBP regulations. To perform this analysis existing water treatment models were used in conjunction with historic water quality sampling data to predict chemical usage necessary to meet DBP regulations. A retrospective analysis was performed for the summer months of 2007 regarding potential for the WTP to reduce cost through optimizing the source water by an average of 30% over the four-month period, accumulating to overall treatment savings of $154 per MG ($82 per AF).
ContributorsRice, Jacelyn (Author) / Westerhoff, Paul (Thesis advisor) / Fox, Peter (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2011
150162-Thumbnail Image.png
Description
Disinfection byproducts are the result of reactions between natural organic matter (NOM) and a disinfectant. The formation and speciation of DBP formation is largely dependent on the disinfectant used and the natural organic matter (NOM) concentration and composition. This study examined the use of photocatalysis with titanium dioxide for the

Disinfection byproducts are the result of reactions between natural organic matter (NOM) and a disinfectant. The formation and speciation of DBP formation is largely dependent on the disinfectant used and the natural organic matter (NOM) concentration and composition. This study examined the use of photocatalysis with titanium dioxide for the oxidation and removal of DBP precursors (NOM) and the inhibition of DBP formation. Water sources were collected from various points in the treatment process, treated with photocatalysis, and chlorinated to analyze the implications on total trihalomethane (TTHM) and the five haloacetic acids (HAA5) formations. The three sub-objectives for this study included: the comparison of enhanced and standard coagulation to photocatalysis for the removal of DBP precursors; the analysis of photocatalysis and characterization of organic matter using size exclusion chromatography and fluorescence spectroscopy and excitation-emission matrices; and the analysis of photocatalysis before GAC filtration. There were consistencies in the trends for each objective including reduced DBP precursors, measured as dissolved organic carbon DOC concentration and UV absorbance at 254 nm. Both of these parameters decreased with increased photocatalytic treatment and could be due in part to the adsorption to as well as the oxidation of NOM on the TiO2 surface. This resulted in lower THM and HAA concentrations at Medium and High photocatalytic treatment levels. However, at No UV exposure and Low photocatalytic treatment levels where oxidation reactions were inherently incomplete, there was an increase in THM and HAA formation potential, in most cases being significantly greater than those found in the raw water or Control samples. The size exclusion chromatography (SEC) results suggest that photocatalysis preferentially degrades the higher molecular mass fraction of NOM releasing lower molecular mass (LMM) compounds that have not been completely oxidized. The molecular weight distributions could explain the THM and HAA formation potentials that decreased at the No UV exposure samples but increased at Low photocatalytic treatment levels. The use of photocatalysis before GAC adsorption appears to increase bed life of the contactors; however, higher photocatalytic treatment levels have been shown to completely mineralize NOM and would therefore not require additional GAC adsorption after photocatalysis.
ContributorsDaugherty, Erin (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Mayer, Brooke (Committee member) / Arizona State University (Publisher)
Created2011
150317-Thumbnail Image.png
Description
To address sustainability issues in wastewater treatment (WWT), Siemens Water Technologies (SWT) has designed a "hybrid" process that couples common activated sludge (AS) and anaerobic digestion (AD) technologies with the novel concepts of AD sludge recycle and biosorption. At least 85% of the hybrid's AD sludge is recycled to the

To address sustainability issues in wastewater treatment (WWT), Siemens Water Technologies (SWT) has designed a "hybrid" process that couples common activated sludge (AS) and anaerobic digestion (AD) technologies with the novel concepts of AD sludge recycle and biosorption. At least 85% of the hybrid's AD sludge is recycled to the AS process, providing additional sorbent for influent particulate chemical oxygen demand (PCOD) biosorption in contact tanks. Biosorbed PCOD is transported to the AD, where it is converted to methane. The aim of this study is to provide mass balance and microbial community analysis (MCA) of SWT's two hybrid and one conventional pilot plant trains and mathematical modeling of the hybrid process including a novel model of biosorption. A detailed mass balance was performed on each tank and the overall system. The mass balance data supports the hybrid process is more sustainable: It produces 1.5 to 5.5x more methane and 50 to 83% less sludge than the conventional train. The hybrid's superior performance is driven by 4 to 8 times longer solid retention times (SRTs) as compared to conventional trains. However, the conversion of influent COD to methane was low at 15 to 22%, and neither train exhibited significant nitrification or denitrification. Data were inconclusive as to the role of biosorption in the processes. MCA indicated the presence of Archaea and nitrifiers throughout both systems. However, it is inconclusive as to how active Archaea and nitrifiers are under anoxic, aerobic, and anaerobic conditions. Mathematical modeling confirms the hybrid process produces 4 to 20 times more methane and 20 to 83% less sludge than the conventional train under various operating conditions. Neither process removes more than 25% of the influent nitrogen or converts more that 13% to nitrogen gas due to biomass washout in the contact tank and short SRTs in the stabilization tank. In addition, a mathematical relationship was developed to describe PCOD biosorption through adsorption to biomass and floc entrapment. Ultimately, process performance is more heavily influenced by the higher AD SRTs attained when sludge is recycled through the system and less influenced by the inclusion of biosorption kinetics.
ContributorsYoung, Michelle Nichole (Author) / Rittmann, Bruce E. (Thesis advisor) / Fox, Peter (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2011
150305-Thumbnail Image.png
Description
Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from

Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from Synechocystis. Chloroform + methanol-based Folch and Bligh & Dyer methods were proved to be "gold standard" for small-scale analysis due to their highest lipid recoveries that were confirmed by their penetration of the cell membranes, higher polarity, and stronger interaction with hydrogen bonds. Less toxic solvents, such as methanol and MTBE, or direct transesterification of biomass (without pre-extraction step) gave only slightly lower lipid-extraction yields and can be considered for large-scale application. Sustained exposure to high and low temperature extremes severely lowered the biomass and lipid productivity. Temperature stress also triggered changes of lipid quality such as the degree of unsaturation; thus, it affected the productivities and quality of Synechocystis-derived biofuel. Pulsed electric field (PEF) was evaluated for cell disruption prior to lipid extraction. A treatment intensity > 35 kWh/m3 caused significant damage to the plasma membrane, cell wall, and thylakoid membrane, and it even led to complete disruption of some cells into fragments. Treatment by PEF enhanced the potential for the low-toxicity solvent isopropanol to access lipid molecules during subsequent solvent extraction, leading to lower usage of isopropanol for the same extraction efficiency. Other cell-disruption methods also were tested. Distinct disruption effects to the cell envelope, plasma membrane, and thylakoid membranes were observed that were related to extraction efficiency. Microwave and ultrasound had significant enhancement of lipid extraction. Autoclaving, ultrasound, and French press caused significant release of lipid into the medium, which may increase solvent usage and make medium recycling difficult. Production of excreted FFA by mutant Synechocystis has the potential of reducing the complexity of downstream processing. Major problems, such as FFA precipitation and biodegradation by scavengers, account for FFA loss in operation. Even a low concentration of FFA scavengers could consume FFA at a high rate that outpaced FFA production rate. Potential strategies to overcome FFA loss include high pH, adsorptive resin, and sterilization techniques.
ContributorsSheng, Chieh (Author) / Rittmann, Bruce E. (Thesis advisor) / Westerhoff, Paul (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2011
150327-Thumbnail Image.png
Description
This dissertation presents a systematic study of the sorption mechanisms of hydrophobic silica aerogel (Cabot Nanogel®) granules for oil and volatile organic compounds (VOCs) in different phases. The performance of Nanogel for removing oil from laboratory synthetic oil-in-water emulsions and real oily wastewater, and VOCs from their aqueous solution, in

This dissertation presents a systematic study of the sorption mechanisms of hydrophobic silica aerogel (Cabot Nanogel®) granules for oil and volatile organic compounds (VOCs) in different phases. The performance of Nanogel for removing oil from laboratory synthetic oil-in-water emulsions and real oily wastewater, and VOCs from their aqueous solution, in both packed bed (PB) and inverse fluidized bed (IFB) modes was also investigated. The sorption mechanisms of VOCs in the vapor, pure liquid, and aqueous solution phases, free oil, emulsified oil, and oil from real wastewater on Nanogel were systematically studied via batch kinetics and equilibrium experiments. The VOC results show that the adsorption of vapor is very slow due to the extremely low thermal conductivity of Nanogel. The faster adsorption rates in the liquid and solution phases are controlled by the mass transport, either by capillary flow or by vapor diffusion/adsorption. The oil results show that Nanogel has a very high capacity for adsorption of pure oils. However, the rate for adsorption of oil from an oil-water emulsion on the Nanogel is 5-10 times slower than that for adsorption of pure oils or organics from their aqueous solutions. For an oil-water emulsion, the oil adsorption capacity decreases with an increasing proportion of the surfactant added. An even lower sorption capacity and a slower sorption rate were observed for a real oily wastewater sample due to the high stability and very small droplet size of the wastewater. The performance of Nanogel granules for removing emulsified oil, oil from real oily wastewater, and toluene at low concentrations in both PB and IFB modes was systematically investigated. The hydrodynamics characteristics of the Nanogel granules in an IFB were studied by measuring the pressure drop and bed expansion with superficial water velocity. The density of the Nanogel granules was calculated from the plateau pressure drop of the IFB. The oil/toluene removal efficiency and the capacity of the Nanogel granules in the PB or IFB were also measured experimentally and predicted by two models based on equilibrium and kinetic batch measurements of the Nanogel granules.
ContributorsWang, Ding (Author) / Lin, Jerry Y.S. (Thesis advisor) / Pfeffer, Robert (Thesis advisor) / Westerhoff, Paul (Committee member) / Nielsen, David (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2011
152297-Thumbnail Image.png
Description
This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future deployable ocean monitoring systems. T. pseudonana, which is a common

This thesis research focuses on developing a single-cell gene expression analysis method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation for future deployable ocean monitoring systems. T. pseudonana, which is a common surface water microorganism, was detected in the deep ocean as confirmed by phylogenetic and microbial community functional studies. Six-fold copy number differences between 23S rRNA and 23S rDNA were observed by RT-qPCR, demonstrating the moderate functional activity of detected photosynthetic microbes in the deep ocean including T. pseudonana. Because of the ubiquity of T. pseudonana, it is a good candidate for an early warning system for ocean environmental perturbation monitoring. This early warning system will depend on identifying outlier gene expression at the single-cell level. An early warning system based on single-cell analysis is expected to detect environmental perturbations earlier than population level analysis which can only be observed after a whole community has reacted. Preliminary work using tube-based, two-step RT-qPCR revealed for the first time, gene expression heterogeneity of T. pseudonana under different nutrient conditions. Heterogeneity was revealed by different gene expression activity for individual cells under the same conditions. This single cell analysis showed a skewed, lognormal distribution and helped to find outlier cells. The results indicate that the geometric average becomes more important and representative of the whole population than the arithmetic average. This is in contrast with population level analysis which is limited to arithmetic averages only and highlights the value of single cell analysis. In order to develop a deployable sensor in the ocean, a chip level device was constructed. The chip contains surface-adhering droplets, defined by hydrophilic patterning, that serve as real-time PCR reaction chambers when they are immersed in oil. The chip had demonstrated sensitivities at the single cell level for both DNA and RNA. The successful rate of these chip-based reactions was around 85%. The sensitivity of the chip was equivalent to published microfluidic devices with complicated designs and protocols, but the production process of the chip was simple and the materials were all easily accessible in conventional environmental and/or biology laboratories. On-chip tests provided heterogeneity information about the whole population and were validated by comparing with conventional tube based methods and by p-values analysis. The power of chip-based single-cell analyses were mainly between 65-90% which were acceptable and can be further increased by higher throughput devices. With this chip and single-cell analysis approaches, a new paradigm for robust early warning systems of ocean environmental perturbation is possible.
ContributorsShi, Xu (Author) / Meldrum, Deirdre R. (Thesis advisor) / Zhang, Weiwen (Committee member) / Chao, Shih-hui (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2013